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a b s t r a c t 

This paper deals with the realization of physical proof of concept experiments in the paradigm of Linked 

Multi-Component Robotic Systems (LMCRS). The main objective is to demonstrate that the controllers 

learned through Reinforcement Learning (RL) algorithms with different state space formalizations and 

different spatial discretizations in a simulator are reliable in a real world configuration of the task of 

transporting a hose by a single robot. This one is a prototypical example of LMCRS task (extendable to 

much more complex tasks). We describe how the complete system has been designed and implemented. 

Two different previously learned RL controllers have been tested solving two different LMCRS control 

problems, using different state space modeling and discretization step in each case. The physical real- 

izations validate previously published simulation based results, giving a strong argument in favor of the 

suitability of RL techniques to deal with LMCRS systems. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The autonomous learning of optimal policies to carry out tasks 

with Linked Multi-Component Robotic Systems (LMCRS) [1] is an 

open research field. These systems are composed of a collection 

of autonomous robots linked by a flexible one-dimensional link 

introducing additional non-linearities and uncertainties when de- 

signing the control of the robots to accomplish a given task, of- 

ten related to the non-rigid link itself. A paradigmatic task exam- 

ple is the transportation of a hose-like object by the robots (or 

only one robot in its simplest form). The first attempts to deal 

with this problem modeled the task as a cooperative control prob- 

lem [2] , however that too low level approach lacked the intended 

autonomous learning. The work reported in [3,4] gave a break- 

through contribution: a powerful modeling and simulation tool 

based on Geometrically Exact Dynamic Splines (GEDS) [5–7] to ex- 

ecute accurate simulations of LMCRS, allowing to assess the dy- 

namical effects of the linking element (i.e., the hose) of the LM- 

CRS on the active elements (i.e., the robots) [8] . Using that tool, 
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the work focused on the autonomous learning of optimal poli- 

cies by Reinforcement Learning (RL) [9] reformulating the task as 

a Markov Decision Process (MDP) [9–11] . Within the RL paradigm, 

the Q-Learning algorithm [9,12,13] was implemented because it al- 

lows the learner agent to learn from its experience with the en- 

vironment, without any previous knowledge. Several works have 

been reported [14–19] using Q-Learning showing optimal results. 

Following the philosophy of using RL techniques that learn only 

from the experience, the TRQ-Learning algorithm was introduced 

in [20] reaching better results with boosted convergence. However, 

these results were always demonstrated in computer simulations. 

The main objective of the paper is to report the execution of 

two proof of concept physical experiments of the task in the sim- 

plest instance of a LMCRS (with only one robot) to demonstrate 

that the computational simulation results are transferable to real 

physical world systems, even when the controllers have been ob- 

tained departing from different space state formalizations and dif- 

ferent space discretization steps. To achieve this objective first it 

is necessary to build a complete physical system composed of the 

hose to transport, the robot that transports the hose, the RL con- 

troller that controls the execution of the task, the communications 

interface connecting the RL controller and the robot, and, finally, a 

perception system to monitor the evolution of the task execution. 
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Fig. 1. Generic closed loop of the general system. 

Fig. 2. Specific closed loop of the general system. 

The paper is structured as follows. Section 2 details the 

design of the different parts of the system and their 

implementation to carry out the proof of concept experiments. 

The specific experimental design is given in Section 3 , while 

Section 4 discusses the results obtained in the experimental 

realizations. Finally, Section 5 summarizes the obtained conclu- 

sions. 

2. System design and implementation 

In this section, we introduce the global system design and im- 

plementation by means of which the proof of concept has been 

carried out. First we describe the global control closed loop scheme 

through block diagrams. Later, the processes represented by the 

main blocks are explained with more detail. 

2.1. Global scheme control 

A generic representation of a closed loop control system is 

shown in Fig. 1 . This abstract representation highlights that the 

perception and recognition of the global system goal is modeled 

through the concept of state . The global system tries to reach a de- 

sired state ( s goal ) from the actual state ( s ′ ) reached by the system. 

If these states do not match, the controller generates an action tak- 

ing into account the actual system state. This action is carried out 

by the agent producing a change in the environment leading to a 

new state ( s ′ ), which is again perceived by the sensors. 

Fig. 2 clarifies the previous generic schema showing the main 

specific modules composing the system in this proof of concept, 

whose boxes are highlighted with a thicker trace: 

• A control module, built according to the optimal policy π
learned by means of a RL algorithm. 

• A communications module in charge of the transmission of the 

action to be executed by the robot by means of a wireless in- 

terface built for the occasion. 

• The actuator that exerts the action on the environment, i.e., the 

robot. 

• The perception module sensing and monitoring the environ- 

ment after the actions have been executed to build the new 

system’ s state representation. 

2.2. RL control module 

This module is the responsible for determining the optimal ac- 

tion to be carried out at each moment by the agent in order to 

reach the goal state ( s goal ) knowing the actual state ( s ′ ). It is desir- 

able to clarify that the RL controller has been previously learned by 

means of anyone of the available RL algorithms, and at this point it 

is executed without any retraining process. Therefore, at this stage 

the controller is in the exploitation phase, so that it is neither able 

to learn new knowledge nor to improve its performance. The previ- 

ous required learning phase has been carried out using Q-Learning 

or TRQ-Learning algorithms, reaching a performance of 92% suc- 

cessful goals in the validation based on simulated processes. Any- 

way, that training phase is carefully described in previous papers 

[14–20] and it is beyond the scope of this paper. 

Once that the agent has been trained, it is said that it imple- 

ments a policy π (which is our best approximation to an optimal 

policy π ∗ to reach a given objective). 

Although the training phase is not the main issue of this paper, 

it determines several aspects of the control module of this proof of 

concept. Since the learning algorithms have been the well known 

Q-Learning algorithm and the TRQ-Leaning [20] , the knowledge of 

the agent has been implemented through a Q matrix representa- 

tion, where a state-action value function is used. That Q matrix 

representation has as many rows as different states have been vis- 

ited during the learning process, and as many different columns as 

actions are available to the agent to execute in the environment. 

2.3. Robot manager 

This part corresponds to the actuator block of the generic closed 

loop control system shown in Fig. 1 . In this case, the actions that 

the agent can execute in the environment are movements of the 

SR1 robot. That robot model is quite simple and cheap, and we 

have adapted it to our purpose. We have divided the software 

functions that we have built into two groups according to their ab- 

straction level. 

2.3.1. Low level functions 

This set of low abstraction level functions includes all the set- 

tings and functions that are necessary to carry out our purpose, 

lying below the interface that the robot offers to the RL controller. 

The first operation that we had to carry out was the calibration of 

the two servo motors to determine the width of pulses necessary 

to reach a given velocity. This operation was performed only once, 

but there are other supporting functions executed by demand of 

the high abstraction level functions: 

• Managing and sending pulses to each servo motor. 

• Serial port I2C management. 

• Orientation measurement using the internal robot compass. 
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