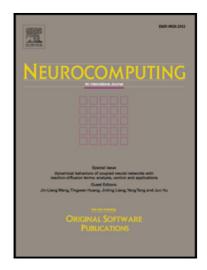
Accepted Manuscript

Classification of Small Structures in Piecewise-Constant Mumford-Shah Model

Hong-Yuan Wang, Fuhua Chen, Alexis Brum, Cheng-Xian Shi


PII: \$0925-2312(17)31004-4

DOI: 10.1016/j.neucom.2016.11.090

Reference: NEUCOM 18534

To appear in: Neurocomputing

Received date: 7 September 2016 Revised date: 11 November 2016 Accepted date: 14 November 2016

Please cite this article as: Hong-Yuan Wang, Fuhua Chen, Alexis Brum, Cheng-Xian Shi, Classification of Small Structures in Piecewise-Constant Mumford-Shah Model, *Neurocomputing* (2017), doi: 10.1016/j.neucom.2016.11.090

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Classification of Small Structures in Piecewise-Constant Mumford-Shah Model

Hong-Yuan Wang^a, Fuhua Chen b* , Alexis Brum^b, and Cheng-Xian Shi^a

^aSchool of Information Science & Engineering, Changzhou University, Changzhou, Jiangsu, China 213164

^bCollege of Science, West Liberty University, West Liberty, WV 26074, USA

Abstract. Mumford-Shah model is a very popular variational model in image restoration and image classification. As a simplification, piecewise constant Mumford-Shah model is very useful and has been extensively studied in recent two decades. An interesting topic on Mumford-Shah model is how to choose the weight parameters for implementation. This paper aims at discussing and analyzing the relation between choosing weight parameters and removing/preserving small structures, including noise, for piecewise-constant Mumford-Shah model. The main contributions are: (1) provided a necessary condition on the weight parameter of regularity term for removing a small structure from background. It is proved that whether or not a small structure could be removed from the background in the piecewise-constant Mumford-Shah model depends on two aspects: the ratio of the area to the perimeter for the smaller structure and the intensities of other classes; (2) provided a decision-making strategy on the class that a small structure will be classified to if it does not belong to the background; (3) developed a balanced Mumford-Shah model with which the scale measurements (weights for fidelity terms) can be chosen based on prior knowledge or users' purposes.

Keywords: Mumford-Shah Model; image classification; balanced segmentation; small structure

1 Introduction

Let I(x) be an 2-D image defined on a bounded, smooth and open set $\Omega \subset \mathbf{R}^2$. Suppose there are K different objects existing in the domain. Together with the background, there are totally K+1 classes in the image. The K+1-phase segmentation is to find a partition $\{\Omega_i\}_{i=0}^K$ of Ω so that the pixels in a same region Ω_i share same or similar features while pixels located in different regions have quite different features. In this paper, we always use Ω_0 to represent the

^{*} Correspondence author: Fuhua Chen. Email address: fuhua.chen@westliberty.edu. This research was supported by the National Natural Science of Foundation of China (No. 61572085), "Research on the key technology of pedestrian trajectory discovery in intelligent video surveillance."

Download English Version:

https://daneshyari.com/en/article/4946873

Download Persian Version:

https://daneshyari.com/article/4946873

<u>Daneshyari.com</u>