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a b s t r a c t 

Graph matching is a fundamental problem in artificial intelligence and structural data processing. Hy- 

pergraph matching has recently become popular in the graph matching community. Existing hypergraph 

matching algorithms usually resort to the continuous methods, while the combinatorial nature of hyper- 

graph matching is not well considered. Therefore in this paper, we propose a novel hypergraph matching 

algorithm by introducing the affinity tensor updating based graduated projection. Specifically, the hy- 

pergraph matching problem is first formulated as a combinatorial optimization problem in a high order 

polynomial form. Then this NP-hard problem is relaxed and interpreted in a probabilistic manner, which 

is approximately solved by iterative techniques. The updating of the affinity tensor is performed in each 

iteration, besides the updating of probabilistic assignment vector. Experimental results on both synthetic 

and real-world datasets witness the effectiveness of the proposed method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Graph matching, aiming to find an optimal set of vertex assign- 

ments between graphs, is a fundamental problem in artificial in- 

telligence and structural data processing, such as the biomedical & 

biological applications, local feature feature correspondence, CAD 

image analysis, etc. 

Most graph matching problems are NP-complete problems, 1 

and there have been various types of algorithms to approximately 

solve them. Please refer to [2] for a comprehensive survey on 

the history and categorization of these algorithms. Generally, the 

main research stream has been focused on the second-order graph 

matching problem, which explores the pairwise structural informa- 

tion of graphs. Some representative pairwise graph matching algo- 

rithms include the spectral methods [3–5] , the deterministic meth- 

ods [6–8] , the convex optimization methods [9] , etc. 

In recent years, promoted by the fast increasing computational 

ability and storage capacity of computers, hypergraph matching 

which explores high-order relations between vertices beyond the 

pairwise cues, has attracted the attentions of many leading re- 

searchers in the graph matching community. The existing hyper- 
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graph matching algorithms usually resort to the continuous meth- 

ods, which first relax the original combinatorial optimization prob- 

lem to a continuous optimization problem, and then project the 

continuous solution back to the discrete domain. 

However, the combinatorial nature of hypergraph matching is 

usually not considered in the optimization processes of these al- 

gorithms. On the other hand it has been observed that incorpo- 

rating discrete constraints in the optimization process may greatly 

improve the matching performance in pairwise graph matching al- 

gorithms. 

Therefore in this paper, we propose a novel hypergraph match- 

ing algorithm by introducing the affinity tensor updating based 

graduated projection. Specifically, the hypergraph matching prob- 

lem is first formulated as a combinatorial optimization problem in 

a high order polynomial form. Then this NP-complete problem is 

relaxed and interpreted in a probabilistic manner, which is approx- 

imately solved by iterative techniques. The updating of the affinity 

tensor, which encodes high-order similarity between hypergraphs, 

is performed in each iteration, besides the updating of probabilistic 

assignment vector. Consequently, the final probabilistic assignment 

vector obtained is usually very close to the discrete domain. Exper- 

imental results on both synthetic and real-world datasets witness 

the effectiveness of the proposed method. 

The remaining manuscript is organized as follows: After some 

discussions on the related works in Section 2 , the proposed hy- 

pergraph matching algorithm is introduced in Section 3 , which is 

followed by the experimental result analysis in Section 4 . Finally 

Section 5 concludes the paper. 
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2. Related works 

In this section, a brief survey on the hypergraph matching algo- 

rithms is first presented, and then the graduated projection strate- 

gies in recent graph matching algorithms, especially the pairwise 

graph matching algorithms, are discussed. 

2.1. Hypergraph matching algorithms 

The first hypergraph matching algorithm was proposed by Zass 

and Shashua [10] in a probabilistic framework, which assumes 

that the unfolded affinity tensor is equal to the Kronecker product 

of assignment matrix. Duchenne et al. [11] extended the famous 

spectral method [3] to the tensor situation by computing the 

rank-one approximation of the affinity tensor. Simultaneously, 

Chertok and Keller [12] also proposed a high order spectral algo- 

rithm based on the unfolded affinity tensor. The integer projected 

fixed point (IPFP) [13] algorithm proposed by Leordeanu et al. was 

generalized to the high order situation by the same authors in a 

semi-supervised learning framework, which is named by the IPFP- 

3D [14] . Similarly, the reweighted random walk matching (RRWM) 

algorithm was also generalized to hypergraph matching problem 

by the same research team, which is named by the RRWHM [15] . 

Focusing on the high complexity caused by the affinity tensor, 

Park et al. [16] proposed a novel method to reduce the redundancy 

in the affinity tensor. Celiktutan et al. [17] proposed a dynamic 

programming based exact optimization algorithm for the relaxed 

hypergraph matching model, which is used in action recognition. 

Nguyen et al. [18] reformulated the original polynomial objective 

function associated with the hypergraph matching model by a 

higher order convex multi-linear form, and solved it based on a 

tensor block coordinate scheme. Yan et al. [19] devised a discrete 

hypergraph matching scheme by introducing a discretization 

step in each iteration with theoretically guaranteed convergence 

property. 

2.2. Graduated projection strategies in graph matching 

In recent graph matching algorithms, it has been observed that 

introducing the graduated projection of the continuous solution to 

the discrete domain could significantly improve the matching per- 

formance. One first algorithm considering the graduated projection 

may be the well-known graduated assignment, which is still con- 

sidered to be state-of-the-art [4,20] . Besides, by taking advantage 

of the convex relaxation and concave relaxation of the objective 

function, the path following algorithm [7,21] , has attracted the at- 

tentions of many researchers, which gradually push the continuous 

solution to be a discrete one. Later, the path following algorithm 

was extended and improved by [8,22–24] with a similar idea. The 

graduated projection is also introduced to the important group of 

spectral graph matching methods which explore the spectral char- 

acteristics of the graphs. Specifically, by generalizing the condi- 

tional gradient ascent [25,26] method, a discrete (integer) projec- 

tion scheme is introduced in [13] , which is named by IPFP as men- 

tioned above. By introducing a reweighted step, the RRWM is also 

related to the graduated projection, which, to some extent, can be 

treated as a combination the classic spectral method [3] and the 

graduated assignment method [6] . The recently proposed pairwise 

graph matching algorithm [4] also achieves a type of graduated 

projection by iteratively refining the affinity matrix and the soft- 

ened assignment vector. 

Representative hypergraph matching algorithms considering the 

graduated projection include the above mentioned IPFP-3D and 

RRWHM. 

3. Probability hypergraph matching algorithm 

3.1. Problem formulation 

A hypergraph G = { V, L, E, W } of size M is defined by a vertex 

set V = { 1 , . . . , M} , a vertex label set L = { l 1 , . . . , l M 

} , a finite 

hyper-edge set E = { e 1 , e 2 , . . . } , and a finite hyper-edge weight set 

W = { w e 1 , w e 2 , . . . } . A vertex label l i ∈ R 

d L refers to a descriptor 

vector for the vertex i . For instance, if graphs are constructed from 

the SIFT feature points [27] in image processing problems, the 

d L = 128 dimensional appearance descriptor can be used as the 

vertex label. Different from the usual graph edge e = i j which con- 

nects two vertices i and j , a hyper-edge e 1 = i j . . . could connect 

any number of vertices. If all the hyper-edges in a hypergraph 

connect an equal number of vertices, or say they are the same 

size k , the hypergraph is named by the k -uniform hypergraph. For 

instance, a 2-uniform hypergraph is a usual graph. It is straightfor- 

ward that a hypergraph matching problem can be transformed into 

a combination of a series of hypergraph matching subproblems, 

which subproblem matches two k -uniform hypergraphs. Since the 

proposed algorithm are applicable to any k -uniform hypergraph 

matching problem, for representation and reading convenience 

this paper only focuses on the 3-uniform hypergraph, without 

considering the pairwise and higher-order relations. In this case, a 

hyper-edge e 1 = i jk is a triplet, and a hyper-edge weight w i jk ∈ R 

d w 

is vector describing the structural property of the triplet ijk . 

Given two hypergraphs G of size M and H of size N , a match- 

ing between them is to find an optimal set of assignments be- 

tween the two vertex sets V G and V H . Mathematically, these as- 

signments can be represented by an assignment matrix X ∈ {0, 

1} M × N . Specifically, X i,a = 1 denotes that there exist an assign- 

ment { i, a } between vertex i in G and vertex a in H, and X i,a = 0 

means that no assignments exist between the two vertices. When 

further considering the one-to-one matching constraint, which is 

a common assumption in graph matching problems, X can be de- 

fined by 

X ∈ D = 

{ 

X | ∑ 

i 

X i,a ≤ 1 , 
∑ 

a 

X i,a ≤ 1 , X i,a ∈ { 0 , 1 } . 
} 

(1) 

The row-wise replica of X is denoted by x , i.e. x (i −1) N+ a = X i,a . 

The similarity between G and H can be encoded by a non- 

negative third order tensor A ∈ [0 , + ∞ ) M N×M N×M N named by the 

affinity tensor, which is a generalization of the affinity matrix in 

pairwise graph matching algorithms [3,4] . Mathematically, A can 

be defined as follows: 

A i ′ , j ′ ,k ′ = A (i −1) N+ a, ( j−1) N+ b, (k −1) N+ c 

= 

⎧ ⎨ 

⎩ 

(1 − α) A (l i , l a ) , if i = j = k, a = b = c, 

αA (w i jk , w abc ) , if i jk in G and abc in H both exist, 

0 , otherwise. 

(2) 

where the diagonal entry A (l i , l a ) is an affinity measure of two la- 

bels l i in G and l a in H, and the non-diagonal entry A (w i jk , w abc ) 

is an affinity measure of two weights w ijk in G and w abc in H. The 

weight parameter α is used to balance the two types of affinity 

measures. 

Typically, the matching between G and H can be formulated by 

the maximization of a cubical term as follows: 

x = arg max 
x 

∑ 

A (i −1) N+ a, ( j −1) N+ b, (k −1) N + c x (i −1) N + a x ( j −1) N + b x (k −1) N + c 

= A �I x �J x �K x . (3) 

where I, J , and K denote the three dimensions of A , and the no- 

tation �I denotes the mode- I product of a tensor and a vector 
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