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a b s t r a c t 

We consider the modelling of parametrized processes, where the goal is to model the process for new pa- 

rameter value combinations. We compare the classical regression approach to a modular approach based 

on regression in the model space: First, for each process parametrization a model is learned. Second, a 

mapping from process parameters to model parameters is learned. We evaluate both approaches on two 

synthetic and two real-world data sets and show the advantages of the regression in the model space. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Many processes in nature and technology depend on the envi- 

ronment or the context. For example, the water freezing process 

depends on the initial water temperature (Aristotle–Mpemba ef- 

fect). More generally, a chemical process may depend on temper- 

ature and pressure, or a mechanical process may depend on the 

applied forces and material properties. For instance, the dynam- 

ics of robotic manipulator motions can be considered as a pro- 

cess parametrized by the load the robot is carrying. Models of such 

parametrized processes are important in many applications, e.g. for 

optimization and control of production processes. 

We distinguish between process parameters p , which do not 

change during the process, e.g. load mass, and the process inputs x , 

e.g. time. The constancy of the process parameters during the pro- 

cess separates our definition from the contextual features defined 

in [1,2] . The process parameters provide a context or environment 

for the process and shape the process output. They are defined 

over a continuous domain, e.g. masses, temperatures, etc., other- 

wise specialized models for each discrete process parameter con- 

figuration could be learned. We target the generalization of process 

models to novel process parameters. 

The classical, data-driven modelling approach for parametrized 

processes is to train a regressor using the combination of process 
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parameters and process inputs as model inputs (see Fig. 1 (top 

left)). If, for example, the process inputs are a robot motion tra- 

jectory and the process parameter is the load the robot is car- 

rying, then a single model input would consist of a trajectory 

step combined with the mass of the load. Since the load does 

not change during the execution of the trajectory, the mass value 

would be constant. After a change of the load, a model input 

would consist of the new mass value combined with the tra- 

jectory value. This model input encoding leads to an increased 

training data demand to cover the higher-dimensional input space 

spanned by the combination of process parameters and process 

inputs. 

In contrast to this monolithic approach, we propose a mod- 

ular approach, which separates the learning of process parame- 

ters and process inputs utilizing learning in the model space [3] . 

First, for each process parameter combination, we learn a model 

for the process given the process input. This step yields special- 

ized model parameters for the respective process parameters. Sec- 

ond, we learn a mapping from process parameters to the learned 

model parameters—a map from the process parameter space to the 

space of process models. Hence the term regression in the model 

space . We denote the lower-level process models as specialist mod- 

els , and the higher-level regression model from process parameter 

space to model parameter space as generalist model in this paper 

(see Fig. 1 (top right)). By decoupling the learning of specialist and 

generalist models, the dimensionality of the input data for both 

models is smaller and thus better generalization from fewer sam- 

ples can be achieved. 
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Fig. 1. Modelling of parametrized processes with a monolithic (top left) and a mod- 

ular architecture (top right). On the bottom three exemplary instantiations of a 

parametrized process are depicted: The process output y is a function of the process 

input x and depends on the process parametrization p i . 

Learning in the model space was previously mainly applied to 

time series classification [3,4] . Our contribution is the extension 

of the approach to regression in the model space, which we ini- 

tially presented in [5] and applied later to robotics in [6] . Here, 

we extend the analysis of model space regression to the usage 

of Echo State Networks (ESNs, [7] ) as specialist models and anal- 

yse the interpolation and extrapolation capabilities of model space 

regression on a more extensive set of examples. A conceptually 

similar approach was used in robotics for learning of parameter- 

izable motor skills based on dynamic motion primitives [8–10] , 

where mappings from task parameters to parameters of motion 

primitive models are learned. While the work in [10] argues for a 

non-modular learning of parameterized motor skills due to a more 

compact representation, we here show that the modular regres- 

sion in the model space is beneficial with respect to the demand 

for fewer training data. 

An earlier approach related to regression in the model space is 

context-dependent neural networks [2] . In contrast to the work in 

[2] , which used iterative schemes to train context-dependent net- 

work weights, we enable efficient, one-shot learning techniques by 

rigorously separating the training of specialized process models for 

a particular context and the training of the generalist models. We 

achieve this using either Echo State Networks (ESNs, [7] ) or Ex- 

treme Learning Machines (ELMs, [11] ) as specialist models . Some 

light has been shed on the advantageous properties of the model 

space of ESNs for time series classification in [4,12] . 

The remainder of this paper is structured as follows. In 

Section 2 , we briefly describe ELMs and ESNs and then outline 

in Section 3 , how to accomplish regression in the model space of 

ELMs and ESNs. In Section 4 , we apply our approach to two syn- 

thetic and two real-world examples and compare the results to the 

classical monolithic approach. The paper closes with a discussion 

and some concluding remarks. 

2. Echo State Networks (ESN) and Extreme Learning Machines 

(ELM) 

We first review the ESN and ELM network architectures before 

we explain how to apply regression in the model space using these 

models in the next section. 

ESNs and ELMs are neural networks, which comprise three lay- 

ers: An input layer u ∈ R 

I , a hidden layer h ∈ R 

N with N hidden 

neurons, and a linear output or readout layer y ∈ R 

O . 

In ESNs the hidden layer is a reservoir of recurrently connected 

neurons, which provide a non-linear fading memory of the inputs. 

The reservoir states h and the readouts y are updated according to 

h (k ) = (1 −λ) h (k −1) + λa ( W 

rec h (k −1) + W 

in u (k ) + b ) (1) 

y (k ) = W 

out h (k ) , (2) 

where λ ∈ (0, 1] is the leaking rate, a ( ·) the activation function 

applied element-wise to the neuron inputs, e.g. hyperbolic tan- 

gent or logistic, b ∈ R 

N the neuron biases, W 

rec ∈ R 

N×N the recur- 

rent weight matrix, W 

in ∈R 

N×I the weight matrix from the inputs 

to the reservoir neurons and W 

out ∈ R 

O×N the weight matrix from 

the reservoir neurons to the readouts y . W 

in , W 

rec and b are initial- 

ized randomly and remain fixed. W 

rec is scaled to fulfil the Echo 

State Property (ESP, [7] ). The ESP is typically achieved by scaling 

the spectral radius of W 

rec to be smaller than one. The scaling of 

W 

in is task-dependent and has strong influence on the network 

performance. 

In ELMs the hidden layer is feed-forward and the output is 

computed by 

y ( u ) = W 

out a ( W 

in u + b ) . (3) 

The ELM has the universal approximation capability [13] . 

In both methods, i.e. ELMs and ESNs, the readout weights W 

out 

are learned with ridge regression: 

W 

out = arg min 

W 

(‖ H W 

T − T ‖ 

2 + α‖ W ‖ 

2 
)

= 

(
H 

T H + αI 
)−1 

H 

T T , 
(4) 

where H are the collected neuron activations, T the target values 

and α ≥ 0 the regularization strength. The ELM and ESN network 

structure is depicted in Fig. 2 . 

ELMs and ESNs belong to the category of random projection 

techniques, which are based on the idea that a combination of 

random features can lead to a sufficiently rich encoding of the in- 

puts. Since only the output weights are trained, efficient one-shot 

learning e.g. by linear regression can be used instead of gradient 

descent. Compared to neural networks trained with backpropaga- 

tion, usually a higher number of neurons is used to provide a suf- 

ficiently rich combination of features and to increase the memory 

in case of ESNs. 

3. Model S pace R egression (MSR) 

For the learning of parametrized process models, we present 

and compare two approaches: The classical, monolithic approach 

and a modular approach using the concept of regression in the 

model space. 

In the monolithic approach, the process inputs x ∈R 

A and the 

process parameters p ∈R 

B are combined, which results in the in- 

put space I ∈R 

A + B . The monolithic process model f : I → R 

O is then 

learned traditionally using both process inputs and process param- 

eters as model inputs (see Fig. 1 (left)). 

In M odel S pace R egression (MSR), the modelling is made in two 

steps: First, a generalist model creates for a given process param- 

eter combination p a specialist model. For ELM or ESN specialist 

models, the generalist model generates readout matrices W 

out ( p ) 

for the desired process parameters p . Second, the specialist model 

computes from the process input the process output. Since x and 

p are processed separately in MSR, the input spaces I Generalist ∈ R 

A 

for the generalist and I Specialist ∈ R 

B for the specialist are smaller 

than in the monolithic approach. Fig. 1 (right) depicts the modular 

approach with regression in the model space. 

In this paper, we use ELMs and ESNs as specialist models for 

MSR. For the generalist models, we either use an ELM or linear 

(ridge) regression. For the monolithic modelling and the specialists 

in MSR, we use ELMs for stateless processes and ESNs for state- 

dependent processes. In state-dependent processes, the output de- 

pends not only on the current input, but also on the previous in- 

puts. In this case, the dynamic reservoir of the ESN provides the 

necessary short-term memory. 

While training of the monolithic models proceeds as in classical 

supervised learning, the training of the modular approach proceeds 

in two phases: 
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