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a b s t r a c t 

This paper is concerned with the stochastic stabilization for genetic regulatory networks. Based on the 

Lyapunov stability theory in combination with certain convex algorithm, we obtain the sufficient condi- 

tion under which the unstable genetic regulatory network can be stabilized by using Brownian motion. 

Finally, a numerical illustrative example is provided to show the effectiveness and correctness of the pro- 

posed method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the past few years, the genetic regulatory networks have 

been widely applied in many fields such as biomedical sciences, 

engineering sciences and so forth. Up to now, numerous efforts 

have been devoted to this field and accordingly, the research of 

genetic regulatory networks has been greatly improved. Quite a lot 

of mathematical models, such as Boolean networks [2] , Bayesian 

networks [1] , differential equation models [3,4] , stochastic master 

equation models, have been proposed to provide a framework for 

integrating data and gaining insights into the dynamic behavior 

of genetic regulatory networks. Among these models, the differen- 

tial equation model has been playing a vital role, which has been 

widely used to characterize the gene regulation process. 

The differential equation model of genetic regulatory networks 

was originated in [3] . Since then, an increasing number of re- 

searchers [5,6,7,24,25] have started to study the genetic regu- 

latory networks described by the differential equation models, 

resulting in a multitude of research fruits available in the lit- 

erature. These genetic regulatory networks under consideration 

include but are not limited to discrete genetic regulatory net- 

works [8] , continuous genetic regulatory networks [8] , delayed ge- 

netic regulatory networks [9,15,16,18,19] , uncertain genetic regula- 

tory networks [10] , impulsive genetic regulatory networks [11,20] , 

switched genetic regulatory networks [12,21] and stochastic ge- 

netic regulatory networks [9,10,17,26] . In [10] , the author has con- 

sidered the stochastic stability of genetic regulatory networks with 

mixed delays, where sufficient conditions have been established to 
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guarantee the globally asymptotical stability by means of the lin- 

ear matrix inequality (LMI) technique in combination with the Lya- 

punov functional method. Furthermore, the author investigated the 

mean-square asymptotical stability of stochastic genetic regulatory 

networks and discusses the stochastic stability of stochastic de- 

layed genetic regulatory networks. In [9] , the author has firstly 

given a definition of robust stability for uncertain genetic regula- 

tory networks and then derived the sufficient conditions for the 

proposed stability by the unified utilization of Ito formula, LMI 

method and positive Lyapunov–Krasovskii functional approach. 

It is well known that noise can be used to destabilize a given 

stable system. However, it is worth noting that noise can also be 

used to stabilize a given unstable system or to make a system 

more stable. The literature on stabilization by noise is expensive 

(see [13,14,27,28,29] and the references therein). In [13–14] , the 

author has successfully stabilized the unstable nonlinear stochas- 

tic system by utilizing the stochastic noise. Motivated by this idea, 

this article will make use of stochastic noise to stabilize the unsta- 

ble genetic regulatory networks. The paper consists of five sections. 

Section 2 introduces the genetic regulatory network model and a 

useful lemma. In Section 3 , the stochastic stabilization of genetic 

regulatory networks is discussed. Section 4 provides a numerical 

illustrative example to demonstrate the effectiveness of obtained 

result. Section 5 finishes this work with giving a conclusion. 

2. Model description 

The genetic regulatory network is generally described by {
˙ m ( t ) = −Am ( t ) + B f ( p ( t − σ ( t ) ) ) + �

˙ p ( t ) = −C p ( t ) + Dm ( t − τ ( t ) ) 
(1) 
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where m (t) = [ m 1 (t) , m 2 (t) , ..., m n (t) ] T , p( t) = [ p 1 ( t) , p 2 ( t) , ..., p n (t) ] T 

with m i ( t ) and p i ( t ) representing the concentrations of mRNA and 

protein of the i th node, respectively; A = diag( a 1 , a 2 , ..., a n ) and 

C = diag( c 1 , c 2 , ..., c n ) are the decay rates of mRNA and proteins, 

respectively; D = diag( d 1 , d 2 , ..., d n ) denotes the translation rate; f ( 

· ), which is a Hill-type monotonous saturation function, represents 

the feedback regulation of the proteins on the transcription; σ ( t ) 

and τ ( t ) are time-varying delays; � = [ �1 , �2 , ..., �n ] with �i being 

the transcription factor of a repressor of gene I; B = ( b i j ) ∈ R n ×n is 

defined as follows: 

b i j 

⎧ ⎨ 

⎩ 

> 0 if transcription factor j is an activator of gene i 

= 0 if there is no link from node j to i 

< 0 if transcription factor j is a repressor of gene i 

Suppose system (1) has an equilibrium solution ( m 

∗, p 

∗). Let- 

ting x (t) = m (t) − m 

∗ and y(t) = p(t) − p 

∗, system (1) can be re- 

arranged as {
˙ x ( t ) = −Ax ( t ) + B g ( y ( t − σ ( t ) ) ) 

˙ y ( t ) = −Cy ( t ) + Dx ( t − τ ( t ) ) 
(2) 

where g( y( t) ) = f ( y( t) + p 

∗) − f ( y( t) ) and g ( · ) satisfies 

g ( x ) ( g ( x ) − Kx ) ≤ 0 (3) 

with K being a constant. Obviously, system (2) admits a trivial so- 

lution. 

In this paper, we shall stabilize system (2) by using Brown- 

ian motion. More precisely, we will equip system (2) with the 

stabilizing noises of the form Mx ( t )d ω( t ) and Ny ( t )d ν( t ), where 

M = diag ( M 1 , M 2 , . . . , M n ) 
T and N = diag ( N 1 , N 2 , . . . , N n ) 

T , and fur- 

ther seek some appropriate matrices such that the equilibrium so- 

lution of stochastic differential equations {
d x (t) = { −Ax (t) + Bg ( y ( t − σ ( t ) ) ) } d t + Mx ( t ) d ω ( t ) 

d y (t) = { −Cy (t) + Dx ( t − τ ( t ) ) } d t + Ny ( t ) d ν( t ) 
(4) 

is almost surely exponentially stable. 

Before discussion, we introduce the following lemma for later 

use. 

Lemma 1 [22,23] . Consider the following stochastic system 

d x ( t ) = { f ( x ( t ) , t ) } dt+ 

m ∑ 

i =1 

G i x ( t ) d B i ( t ) , (5) 

where f : R 

d × R + → R 

d , which is a continuous function, satisfies lo- 

cal Lipschitz condition and linear growth condition as follows 

| f ( x , t ) | ≤ K | x | . (6) 

Suppose there exist two constants λ > 0 and ρ ≥ 0 such that 

for x ∈ R 

d , 

m ∑ 

i =1 

| G i x | 2 ≤ λ| x | 2 , 
m ∑ 

i =1 

∣∣x 

T G i x 

∣∣2 ≥ ρ| x | 4 

hold. Then, system (5) with the initial condition x ( t 0 ) = x 0 ∈ 

R 

d , t 0 ≤ t satisfies 

lim sup 

t→∞ 

1 

t 
log | x ( t; t 0 , x 0 ) | ≤ −

(
ρ − K − λ

2 

)
. 

If ρ > K + 

λ
2 , the trivial solution of system (5) is almost surely 

exponentially stable. 

3. Stochastic stabilization of genetic regulatory networks 

In this section, we shall give a sufficient condition guaranteeing 

the almost surely exponential stability of system (4) . 

Theorem 1. If ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∣∣∣∣
[

Mx ( t ) 
Ny ( t ) 

]∣∣∣∣
2 

≤
[
λ1 Ix ( t ) 
λ2 Iy ( t ) 

]T [
x ( t ) 
y ( t ) 

]
∣∣∣∣∣
[

x ( t ) 
y ( t ) 

]T [
Mx ( t ) 
Ny ( t ) 

]∣∣∣∣∣
2 

≥ V 

[
x ( t ) 
y ( t ) 

]T [
ρ1 Ix ( t ) 
ρ2 Iy ( t ) 

] (7) 

and {
ρ1 > λ1 / 2 

ρ2 > λ2 / 2 

(8) 

and ⎡ 

⎢ ⎣ 

−2 A + I + λ1 I − 2 ρ1 I 0 0 KB 

0 −2 C + I + λ2 I − 2 ρ2 I D 0 

0 D −I 0 

KB 0 0 −I 

⎤ 

⎥ ⎦ 

< 0 , 

(9) 

then system (4) is almost surely exponentially stable. 

Proof. Constructing the following Lyapunov functional 

V ( t, x , y ) = x T ( t ) x ( t ) + y T ( t ) y ( t ) + 

∫ t 

t −τ ( t ) 

x T ( s ) x ( s ) ds 

+ 

∫ t 

t −σ ( t ) 

y T ( s ) y ( s ) ds , 

we have 

log ( V ) = log ( V 0 ) + O ( t ) 

+ 

∫ t 

0 

V 

−1 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

2 

[
x ( t ) 
y ( t ) 

]T [−Ax ( t ) + B g ( y ( t − σ ( t ) ) ) 
−Cy ( t ) + Dx ( t − τ ( t ) ) 

]
+ x T ( t ) x ( t ) 

−x T ( t − τ ( t ) ) x ( t − τ ( t ) ) + y T ( t ) y ( t ) 

−y T ( t − σ ( t ) ) y ( t − σ ( t ) ) + 

∣∣∣∣
[

Mx ( t ) 
Ny ( t ) 

]∣∣∣∣
2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

dt 

− 1 

2 

∫ t 

0 

V 

−2 4 

∣∣∣∣∣
[

x ( t ) 
y ( t ) 

]T [
Mx ( t ) 
Ny ( t ) 

]∣∣∣∣∣
2 

dt 

= log ( V 0 ) + O ( t ) + 

∫ t 

0 

V 

−1 

[ 

2 

[
x ( t ) 
y ( t ) 

]T [−Ax ( t ) + B g ( y ( t − σ ( t ) ) ) 
−Cy ( t ) + Dx ( t − τ ( t ) ) 

]

+ 

⎡ 

⎢ ⎣ 

x ( t ) 
y ( t ) 

x ( t − τ ( t ) ) 
y ( t − σ ( t ) ) 

⎤ 

⎥ ⎦ 

T ⎡ 

⎢ ⎣ 

I 0 0 0 

0 I 0 0 

0 0 −I 0 

0 0 0 −I 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x ( t ) 
y ( t ) 

x ( t − τ ( t ) ) 
y ( t − σ ( t ) ) 

⎤ 

⎥ ⎦ 

+ 

∣∣∣∣
[

Mx ( t ) 
Ny ( t ) 

]∣∣∣∣
2 

−2 V 

−1 

∣∣∣∣∣
[

x ( t ) 
y ( t ) 

]T [
Mx ( t ) 
Ny ( t ) 

]∣∣∣∣∣
2 
⎤ 

⎦ dt 

≤ log ( V 0 ) + O ( t ) + 

∫ t 

0 

V 

−1 

⎡ 

⎢ ⎣ 

⎡ 

⎢ ⎣ 

x ( t ) 
y ( t ) 

x ( t − τ ( t ) ) 
y ( t − σ ( t ) ) 

⎤ 

⎥ ⎦ 

T 

×

⎡ 

⎢ ⎣ 

−2 A 0 0 KB 

0 −2 C D 0 

0 D 0 0 

KB 0 0 0 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x ( t ) 
y ( t ) 

x ( t − τ ( t ) ) 
y ( t − σ ( t ) ) 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

x ( t ) 
y ( t ) 

x ( t − τ ( t ) ) 
y ( t − σ ( t ) ) 

⎤ 

⎥ ⎦ 

T ⎡ 

⎢ ⎣ 

I 0 0 0 

0 I 0 0 

0 0 −I 0 

0 0 0 −I 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

x ( t ) 
y ( t ) 

x ( t − τ ( t ) ) 
y ( t − σ ( t ) ) 

⎤ 

⎥ ⎦ 
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