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a b s t r a c t 

In this paper, we focus on developing adaptive optimal regulators for a class of continuous-time nonlin- 

ear dynamical systems through an improved neural learning mechanism. The main objective lies in that 

establishing an additional stabilizing term to reinforce the traditional training process of the critic neural 

network, so that to reduce the requirement with respect to the initial stabilizing control, and therefore, 

bring in an obvious convenience to the adaptive-critic-based learning control implementation. It is exhib- 

ited that by employing the novel updating rule, the adaptive optimal control law can be obtained with an 

excellent approximation property. The closed-loop system is constructed and its stability issue is handled 

by considering the improved learning criterion. Experimental simulations are also conducted to verify 

the efficient performance of the present design method, especially the major role that the stabilizing 

term performed. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

As is known, linear optimal regulator design has been studied 

by control scientists and engineers for many years. For nonlinear 

systems, the optimal control problem always leads to cope with 

the nonlinear Hamilton–Jacobi–Bellman (HJB) equation, which is 

intractable to solve in general cases. Fortunately, a series of iter- 

ative methods have been established to tackle the optimal control 

problems approximately [1–3] . For adaptive/approximate dynamic 

programming (ADP) [3–9] , the adaptive critic is taken as the ba- 

sic structure and neural networks are often involved to serve as 

the function approximator. Generally speaking, employing the ADP 

method always results in approximate or adaptive optimal feed- 

back controllers. Note that optimality and adaptivity are two im- 

portant criteria of control theory and also possess grea t signifi- 

cance to control engineering, such as [10–16] . Hence, this kind of 
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adaptive-critic-based optimal control design has great potentials in 

various control applications. 

In the last decade, the methodology of ADP has been widely 

used for optimal control of discrete-time systems, such as 

[17–24] and continuous-time systems, like [25–32] . Heydari and 

Balakrishnan [18] investigated finite-horizon nonlinear optimal 

control with input constraints by adopting single network adaptive 

critic designs. Song et al. [19] proposed a novel ADP algorithm 

to solve the nearly optimal finite-horizon control problem for 

a class of deterministic nonaffine nonlinear time-delay systems. 

Mu et al. [21] studied the approximate optimal tracking control 

design for a class of discrete-time nonlinear systems based on the 

iterative globalized dual heuristic programming technique. Zhao 

et al. [22] gave a model-free optimal control method for optimal 

control of affine nonlinear systems without using the dynamics 

information. Qin et al. [23] studied the neural-network-based 

self-learning H ∞ 

control design for discrete-time input-affine non- 

linear systems in light of ADP method. Zhong et al. [24] developed 

the theoretical basis of the new goal representation heuristic dy- 

namic programming structure for general discrete-time nonlinear 

systems. Vamvoudakis and Lewis [25] proposed an important 

actor-critic algorithm to attain the continuous-time infinite hori- 

zon nonlinear optimal regulation design. Zhang et al. [26] studied 

the approximate optimal control for non-zero-sum differential 

games with continuous-time nonlinear dynamics based on single 
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network adaptive critics. Modares and Lewis [27] proposed a linear 

quadratic trajectory tracking control method for partially-unknown 

continuous-time systems based on the reinforcement learning 

technique. Na and Herrmann [28] proposed an online adaptive and 

approximate optimal trajectory tracking approach with a simpli- 

fied dual approximation architecture for continuous-time unknown 

nonlinear controlled plants. Bian et al. [29] studied decentralized 

adaptive optimal control of a class of large-scale systems and its 

application toward the power systems. Jiang and Jiang [30] orig- 

inally established the global ADP structure for continuous-time 

nonlinear systems. Luo et al. [31] provided the reinforcement 

learning solution for HJB equation with respect to the constrained 

optimal control problems. Gao and Jiang [32] applied ADP to 

design optimal output regulation of linear systems adaptively. This 

greatly promotes the development of the adaptive critic control 

designs of complex nonlinear systems. However, the traditional 

adaptive critic control design always depends on the choice of an 

initial stabilizing control, which is pretty difficult to find out in 

control practices. Actually, requiring an initial stabilizing control 

is a common property of [25,27] , which weakens the application 

aspect of the adaptive-critic-based design to a certain extent, and 

correspondingly, motivates our research greatly. This paper focuses 

on developing nonlinear adaptive optimal regulators through an 

improved neural learning mechanism. The major contribution lies 

in that it constructs a simple reinforced structure to achieve the 

nonlinear optimal regulation design adaptively, without requiring 

the initial stabilizing controller. Moreover, the stability of the 

closed-loop system including the additional stabilizing term is 

presented with a simpler proof process. Finally, the important 

role that the stabilizing term plays is also verified by simulation 

study in detail. This can be regarded as an improvement to the 

traditional adaptive critic designs, like [25,27] . 

The rest of the current paper is organized as follows. The stud- 

ied problem is described briefly in Section 2 . The improved adap- 

tive critic design technique of nonlinear adaptive optimal control 

is developed with closed-loop stability analysis in Section 3 . The 

simulation studies and the concluding remarks are presented in 

Section 4 and Section 5 , respectively. Incidentally, the main nota- 

tions used in the paper are listed as follows. R stands for the set 

of all real numbers. R 

n is the Euclidean space of all n -dimensional 

real vectors. R 

n ×m is the space of all n × m real matrices. ‖·‖ de- 

notes the vector norm of a vector in R 

n or the matrix norm of a 

matrix in R 

n ×m . I n represents the n × n identity matrix. λmax ( ·) 
and λmin ( ·) calculate the maximal and minimal eigenvalues of a 

matrix, respectively. Let � be a compact subset of R 

n and A (�) 

be the set of admissible control laws on �. The superscript “T ” is 

taken for representing the transpose operation and ∇( ·) � ∂ ( ·)/ ∂ x is 
employed to denote the gradient operator. 

2. Problem statement 

In this paper, we study a class of continuous-time nonlinear 

systems with input-affine form given by 

˙ x (t) = f (x (t)) + g(x (t )) u (t ) , (1) 

where x (t) ∈ � ⊂ R 

n is the state variable, u (t) ∈ �u ⊂ R 

m is the 

control variable, and the system functions f (·) ∈ R 

n and g(·) ∈ 

R 

n ×m are known matrices and are differentiable in the arguments 

satisfying f (0) = 0 . In this paper, we let the initial state at t = 0 be 

x (0) = x 0 and let x = 0 be the equilibrium point. In addition, we 

assume that f ( x ) is Lipschitz continuous on a set � in R 

n which 

contains the origin and the nonlinear plant (1) is controllable. 

In order to design the optimal feedback control law u ( x ), we let 

Q ( x ) > 0 when x � = 0 and Q(0) = 0 , set R as a positive definite 

matrix with appropriate dimension, take 

U(x (τ ) , u (τ )) = Q(x (τ )) + u 

T (τ ) Ru (τ ) 

to stand for the utility function, and then define the infinite hori- 

zon cost function as 

J(x (t) , u ) = 

∫ ∞ 

t 

U(x (τ ) , u (τ )) d τ. (2) 

Notice here the cost J ( x ( t ), u ) is often written as J ( x ( t )) or J ( x ) for 

simplicity. For an admissible control law u ∈ A (�) , if the cost 

function (2) is continuously differentiable, then the related in- 

finitesimal version is the nonlinear Lyapunov equation 

0 = U(x, u ) + (∇J(x )) T [ f (x ) + g(x ) u ] 

with J(0) = 0 . Next, we define the Hamiltonian of system (1) as 

H(x, u, ∇J(x )) = U(x, u ) + (∇J(x )) T [ f (x ) + g(x ) u ] . 

According to Bellman’s optimality principle, the optimal cost func- 

tion J ∗( x ) 

J ∗(x ) = min 

u ∈ A (�) 

∫ ∞ 

t 

U(x (τ ) , u (τ )) d τ, 

makes sure that the so-called HJB equation 

min 

u 
H(x, u, ∇J ∗(x )) = 0 

holds. Similar as [25,30] , the optimal feedback control law is com- 

puted by 

u 

∗(x ) = −1 

2 

R 

−1 g T (x ) ∇J ∗(x ) . (3) 

Noticing the optimal control expression (3) , the HJB equation is in 

fact 

0 = U(x, u 

∗) + (∇J ∗(x )) T [ f (x ) + g(x ) u 

∗] 

= Q(x ) + (∇J ∗(x )) T f (x ) 

− 1 

4 

(∇J ∗(x )) T g(x ) R 

−1 g T (x ) ∇J ∗(x ) , J ∗(0) = 0 . (4) 

Eq. (4) is actually H(x, u ∗, ∇J ∗(x )) = 0 , which is difficult to get 

the solution theoretically. In other words, it is clearly not easy to 

obtain the optimal control law (3) for general nonlinear systems, 

which inspires us to effectively design a class of approximate opti- 

mal control schemes. 

3. Approximate optimal control design and its stability 

During the approximate control algorithm implementation, the 

idea of adaptive critic is adopted with neural network approxima- 

tion. Using the universal approximation property, the optimal cost 

function J ∗( x ) can be expressed by a neural network with a single 

hidden layer on a compact set � as 

J ∗(x ) = ω 

T 
c σc (x ) + ε c (x ) , (5) 

where ω c ∈ R 

l c is the ideal weight vector that is upper bounded, 

l c is the number of hidden neurons, σc (x ) ∈ R 

l c is the activation 

function, and ε c (x ) ∈ R is the reconstruction error. Then, the gradi- 

ent vector is 

∇J ∗(x ) = (∇ σc (x )) T ω c + ∇ ε c (x ) . 

Noticing the ideal weight is unknown in advance, a critic network 

is developed to approximate the optimal cost function as 

ˆ J ∗(x ) = ˆ ω 

T 
c σc (x ) , (6) 

where ˆ ω c ∈ R 

l c denotes the estimated weight vector. Similarly, we 

derive the gradient vector as 

∇ ̂

 J ∗(x ) = (∇σc (x )) T ˆ ω c . 

Considering the feedback formulation (3) and the neural network 

expression (5) , the optimal control law can be rewritten as 

u 

∗(x ) = −1 

2 

R 

−1 g T (x ) 
[
(∇σc (x )) T ω c + ∇ε c (x ) 

]
. (7) 
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