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a b s t r a c t 

Previous matrix completion methods are generally based on linear and shallow models where the given 

incomplete matrices are of low-rank and the data are assumed to be generated by linear latent vari- 

able models. In this paper, we first propose a novel method called AutoEncoder based matrix completion 

(AEMC). The main idea of AEMC is to utilize the partially observed data to learn and construct a non- 

linear latent variable model in the form of AutoEncoder. The hidden layer of the AutoEncoder has much 

fewer units than the visible layers do. Meanwhile, the unknown entries of the data are recovered to fit 

the nonlinear latent variable model. Based on AEMC, we further propose a deep learning based matrix 

completion (DLMC) method. In DLMC, AEMC is used as a pre-training step for both the missing entries 

and network parameters; the hidden layer of AEMC is then used to learn stacked AutoEncoders (SAEs) 

with greedy layer-wise training; finally, fine-tuning is carried out on the deep network formed by AEMC 

and SAEs to obtain the missing entries of the data and the parameters of the network. In addition, we 

also provide out-of-sample extensions for AEMC and DLMC to recover online incomplete data. AEMC and 

DLMC are compared with state-of-the-art methods in the tasks of synthetic matrix completion, image 

inpainting, and collaborative filtering. The experimental results verify the effectiveness and superiority of 

the proposed methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Matrix completion [1–5] is to recover or predict the missing or 

unknown entries of partially observed matrices. It has been widely 

applied to practical problems such as image inpainting [6,7] , col- 

laborative filtering [8–10] , and classification [11] . Conventional ma- 

trix completion is also called low-rank matrix completion, in which 

the given incomplete matrix is assumed to be of low-rank. Low- 

rank matrix can be completed by matrix factorization [12–14] , 

where the incomplete matrix is approximated with the multipli- 

cation of a thin matrix and a short matrix. In the matrix factor- 

ization based methods [15–18] , the matrix rank should be given 

in advance. In [19] , a method called low-rank matrix fitting algo- 

rithm (LMaFit) was proposed for factorization based matrix com- 

pletion to dynamically and adaptively adjust the matrix rank. Ma- 

trix factorization based methods have low computational complex- 

ities because the major computation is the multiplication of a thin 

matrix and a short matrix in each iteration. However, they are non- 

convex and their performances are sensitive to the given or esti- 

mated rank. 
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As the missing entries of a low-rank matrix can be optimized 

to make the matrix have lowest rank, nuclear-norm minimiza- 

tion based methods [1,2,20] were proposed for matrix completion. 

Nuclear-norm is defined as the sum of the singular values of a ma- 

trix and is a convex relaxation for matrix rank. Nuclear-norm min- 

imization based matrix completion can be solved through different 

approaches such as the singular value thresholding (SVT) algorithm 

[21] , inexact augmented Lagrange multiplier (IALM) method [22] , 

and alternating direction method (ADM) [13,20] . Recently, a few 

extensions or improvements for nuclear-norm were applied to ma- 

trix completion [6,23–25] . For example, in [6] , truncated nuclear- 

norm (TNN) minimization was proposed for matrix completion. 

Truncated nuclear-norm is defined as the sum of the smallest few 

singular values and is a better approximation than nuclear-norm 

for matrix rank. The reason is that the largest few singular values 

usually contain important information and should be preserved; 

on the other hand, the small singular values should be minimized. 

Compared with matrix factorization based methods, nuclear-norm 

minimization related methods have quite higher computational 

complexities because of the singular value decomposition (SVD) 

in each iteration even if economy or truncated SVD are utilized. 

However, nuclear-norm minimization related methods are convex, 

accurate, and do not require accurately estimated rank. 

The matrix factorization and nuclear-norm minimization based 

methods are linear methods because the low-rankness is based on 
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linear latent variable model [26] . Therefore, they are not effective 

in recovering incomplete matrix in which the data are from nonlin- 

ear latent variable model [27–29] . To handle the non-linear prob- 

lem, in [30] , restricted Boltzmann machines (RBMs) was proposed 

for collaborative filtering. More recently, AutoEncoder based col- 

laborative filtering [31–33] were proposed and outperformed RBMs 

based collaborative filtering. In [31] , for a recommendation system 

(MovieLens datasets), it was proposed to train a different AutoEn- 

coder for each user; all AutoEncoders have the same number of 

hidden units but may have different number of input units set as 

the number of ratings given by the user. The method avoided the 

influence of the missing ratings but one has to train a large num- 

ber of AutoEncoders. In [32] and [33] , the missing entries were 

replaced by pre-defined constants and all the data were used to 

train a single AutoEncoder in which only the reconstruction errors 

of the observed entries were considered. The method was called 

AutoEncoder based collaborative filtering (AECF). However, in AECF, 

the influence of the biases introduced by the pre-defined constants 

cannot be ignored. Moreover, the performances are quite sensitive 

to the pre-defined constants. At last, in these works of collabo- 

rative filtering, RBM and AutoEncoder were never compared with 

nuclear-norm related methods and the performance differences are 

unknown. 

In this paper, we propose a novel method called AutoEncoder 

based matrix completion (AEMC). In AEMC, the parameters of the 

AutoEncoder and the missing entries of the data matrix are simul- 

taneously optimized to minimize the reconstruction errors of the 

observed entries. In the AutoEncoder to be learned for AEMC, the 

hidden units are much fewer than the visible units. Such a struc- 

ture indicates that the given variables are redundant and can be 

compressed into (called encoding) and represented by (called de- 

coding) a fewer number of hidden or latent variables. It also indi- 

cates that a subset of the input variables is able to reconstruct the 

hidden or latent variables, which are further able to generate the 

remaining input variables. That is why AEMC is able to recover the 

missing entries of a matrix in which the data are assumed to be 

given by a nonlinear latent variable model. As deep-structure neu- 

ral networks could be more effective than shallow-structure neural 

networks [34–37] , AEMC is integrated with stacked AutoEncoders 

(SAEs) to form a deep learning based matrix completion (DLMC). 

In DLMC, first, an AEMC is implemented; then the hidden variables 

of AEMC is used to train SAEs; finally, fine-tuning is carried out 

on the deep-structure AEMC. To make the offline-learned models 

applicable to online missing entry recovery, out-of-sample exten- 

sions for AEMC and DLMC are provided in this paper. We compare 

AEMC and DLMC with state-of-the-art methods of matrix factor- 

ization, nuclear-norm minimization, truncated nuclear-norm min- 

imization, and AECF in the tasks of synthetic matrix completion, 

image inpainting, and collaborative filtering. The experimental re- 

sults show that AEMC and DLMC are more effective than other 

methods. 

The contributions of this paper are summarized as follows. First, 

AEMC, as a novel method of matrix completion is proposed to re- 

cover the missing entries of incomplete matrix in which the data 

are given by nonlinear latent variable model. Second, AEMC is ex- 

tended to DLMC, which is a deep learning method for matrix com- 

pletion and is able to outperform shallow methods of matrix com- 

pletion. Finally, out-of-sample extensions for AEMC and DLMC are 

proposed to recover online incomplete data. 

The remaining content of this paper are organized as follows. 

In Section 2 , the previous works of matrix completion are intro- 

duced. Section 3 details our proposed methods AEMC and DLMC. 

Section 4 compares the proposed methods with other state-of-the- 

art methods in the tasks of synthetic matrix completion, image in- 

painting, and collaborative filtering. Section 5 draws a conclusion 

for this paper. 

2. Previous work of matrix completion 

In this section, several representative methods of matrix com- 

pletion will be introduced. Given that a low-rank matrix X ∈ R 

m ×n 

is partially observed, the observed entries and their positions are 

noted as M and �, respectively. Then X i, j = M i, j for each pair ( i, j ) 

∈ �. X can be completed by solving the following matrix factoriza- 

tion problem [9,12,16–18] : 

min 

X,L,R 

1 
2 
(‖ L ‖ 

2 
F + ‖ R ‖ 

2 
F ) , 

s.t. X = LR, X i, j = M i, j , (i, j) ∈ � (1) 

where L ∈ R 

m ×r is a thin matrix and R ∈ R 

r×n is a short matrix. 

The parameter r should be determined beforehand and the opti- 

mal value is the rank of X . In practice, because X is incomplete, 

it is difficult to know or estimate r . To cope with the problem, 

[19] proposed a low-rank matrix fitting (LMaFit) algorithm for ma- 

trix completion. In LMaFit, with the model of (1) , the parameter 

r is dynamically and adaptively adjusted. These matrix factoriza- 

tion based methods are nonconvex and sensitive to the parameter 

r though they have low computational complexities. 

Matrix completion can also be solved by rank minimization. 

However, direct rank minimization is NP-hard. As a convex relax- 

ation of matrix rank, nuclear-norm can be applied to matrix com- 

pletion by solving the following problem 

min 

X 
‖ X ‖ ∗, s.t. X i, j = M i, j , (i, j) ∈ � (2) 

where ‖·‖ ∗ denotes the nuclear norm, the sum of the singular 

values ( σ ) of a given matrix, i.e., ‖ X ‖ ∗ = 

∑ min (m,n ) 
i =1 

σi (X ) . Problem 

(2) is convex and can be solved by techniques such as the sin- 

gular value thresholding (SVT) algorithm [21] , inexact augmented 

Lagrange multiplier (IALM) method [22] , and alternating direction 

method (ADM) [20] . 

As known, the largest few singular values of a matrix often con- 

tain important information and should be preserved if possible. 

Therefore, in [6] , the truncated nuclear norm (TNN), a better rank 

approximation than nuclear-norm, was applied to matrix comple- 

tion. TNN is defined as the nuclear norm subtracted by the sum 

of the largest few singular values, i.e., ‖ X ‖ r = ‖ X ‖ ∗ − ∑ r 
i =1 σi (X ) = ∑ min (m,n ) 

i = r+1 
σi (X ) . For matrix completion, [6] proposed to solve the 

following problem 

min 

X 
‖ X ‖ r , s.t. X i, j = M i, j , (i, j) ∈ � (3) 

which can be reformulated as 

min 

X 
‖ X ‖ ∗ − T r(U l X V 

T 
l ) , 

s.t. X i, j = M i, j , (i, j) ∈ �, 
(4) 

where U l ( V l ) are the first r columns of U ( V ) given by the sin- 

gular value decomposition of X in the l th iteration, i.e., X l = USV T 

[6] . The optimization of (4) can be solved by alternating direction 

method of multipliers (ADMM) [38] . 

Recently, neural networks were applied to collaborative filtering 

[30–33] . For example, in [32] , AutoEncoder based collaborative fil- 

tering (AECF) was proposed. In AECF, first, the missing entries of 

the data were replaced with pre-defined constants; then the data 

were utilized to learn an AutoEncoder, for which the reconstruction 

errors of the observed entries were minimized; finally, the missing 

entries were set as the corresponding outputs of the network. 

3. Deep learning based matrix completion (DLMC) 

3.1. Matrix completion by AutoEncoder and deep learning 

Assume that a set of variables or measurements are given by 

the following nonlinear latent variable model 

x = f (z) + ε, (5) 
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