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a b s t r a c t 

Stereo matching is one of the most important and fundamental topics in computer vision. The calcula- 

tion of matching cost plays a very important role for stereo matching algorithms. The stereo matching 

algorithm proposed by Zbontar and LeCun focusing on the training of the matching cost has showed the 

good performance of the convolutional neural network. Unfortunately, computing a convolutional neu- 

ral network for matching cost is computationally very expensive. This paper proposes a method based 

on learning a Euclidean embedding using a convolutional neural network with a triplet-based loss func- 

tion, where the matching cost is directly computed by the squared L2 distances between two vectors 

in the embedding space. The cost is refined by Semiglobal Matching with an adaptive smoothness con- 

straint based on multi-scale segmentations. The proposed method has a comparable performance with 

the state-of-the-art algorithms, and it overcomes a problem of heavy computation. The proposed method 

takes only about 5 s for predicting a single image pair, where the computing of convolutional neural net- 

works needs less than 2 s with CPU, that is much faster than the algorithm by Zbontar and LeCun where 

the computing of convolutional neural network takes 67 s with GPU. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

As one of the most fundamental and important topics in com- 

puter vision, stereo vision attracts many researchers and has been 

widely researched since there was the publicly available perfor- 

mance testing such as the Middlebury [1] and KITTI stereo bench- 

mark [2] , which allow researchers to compare their algorithms 

against all the state-of-the-art algorithms. 

Different from the feature matching [3,4] , which matches sparse 

feature points in two images, the stereo matching can densely 

match the pixels. Scharstein and Szeliski [1] summarized four steps 

for a typical stereo algorithm, i.e., matching cost computation, cost 

aggregation, optimization, and disparity refinement, respectively. 

Local stereo methods focused on the first two steps [5,6] often 

fail in challenging scenarios of weakly textured, saturated or reflec- 

tive regions. Many global methods based on the research on steps 

(3) and (4) are thus researched and perform well on Middlebury 

benchmark, such as graph cuts [7–9] and belief propagation (BP) 

[10–14] . The stereo is achieved in these global algorithms, essen- 

tially, by solving a Markov Random Field (MRF) model, including 

the assumptions of photo-consistency and smoothness. However, 
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stereo for the complex outdoor scenarios is still a challenging is- 

sue [15] . 

Recently, Zbontar and LeCun [16] trained a convolutional neural 

network (CNN) to compute the matching cost. Their method out- 

performed on KITTI benchmark but need about 67 s for calculating 

a single image pair, where the majority of time during prediction 

is spent in the forward pass of the CNN with a Nvidia GeForce GTX 

Titan GPU. 

Our method is based on learning a Euclidean embedding us- 

ing a convolutional neural network. Different with [16] where the 

matching cost is computed by five full connected layers, the net- 

work in this work is trained such that the squared L2 distances 

in the embedding space directly correspond to matching cost be- 

tween a pair of patches. Thus our method takes only about 5 s for 

predicting a single image pair, where the computing of convolu- 

tional neural networks only needs 1.2 s with a Nvidia GeForce GTX 

880 GPU or 2 s with a Intel i7 CPU. 

1.1. Related work 

Many learning-based stereo algorithms [17–23] have been pro- 

posed since the introduction of large stereo datasets [21,24] . 

A class of training methods aim to compute or refine match- 

ing cost besies Zbontar and LeCun’s convolutional neural network 
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[16] . For example, Kong and Tao [17,18] initialized the matching 

cost with sum of squared distances, and using a trained model to 

predict the probability that whether the initial disparity is correct. 

The initial matching cost was refined based on the predicted prob- 

abilities. Some other works [22,23] focused on estimating the con- 

fidence of the computed matching cost. 

Similarly to our training strategy, Schroff et al. [25] trained a 

deep convolutional neural network called FaceNet for face recogni- 

tion and clustering. They used triplet loss to separate the positive 

pair from the negative by a distance margin. Similar work pro- 

posed by Liu et al. [26] used similar framework for face recogni- 

tion and achieved the state-of-the-art accuracy of Labeled Faces in 

the Wild (LFW) 1 database. The main difference is that FaceNet only 

trained one network, whereas this work trained two networks. 

Except the matching cost, smoothness constraint is an impor- 

tant factor as well, where encouraging self-similar pixels to be as- 

signed to the same label is an effective strategy. A typical way of 

taking advantage of self-similarity is performing a color segmenta- 

tion on the image and regarding the pixels within each segment 

as self-similar pixels. Some segmentation-based algorithms use a 

hard constraint that the pixels within a single segment must be 

assigned to the same plane [10,27,28] , and some others use a soft 

constraint that the neighboring two pixels sharing the same seg- 

ment are only encouraged to lie on the same plane [29,30] . The 

scale of segmentation is important for these algorithms. A large 

scale of segmentation over-constrains the small objects and a small 

scale of segmentation is hard to constrain the large objects. Bleyer 

et al. [31] use a soft segmentation term to encourage the stereo 

result to consistent with a precomputed segmentation, but opti- 

mizing these higher-order cliques is difficult and time consuming. 

1.2. Contributions 

A typical stereo matching algorithm involves the matching cost 

and smoothness constraint. Both aspects are studied in this pa- 

per, which are in correspondence to two main contributions of this 

work that are summarized as follows, respectively. 

Firstly, we proposed a method of learning a Euclidean em- 

bedding using a convolutional neural network. Different with 

[16] where the matching cost is computed by five full connected 

layers, the network in this work is trained such that the squared L2 

distances in the embedding space directly correspond to matching 

cost between a pair of patches. Thus our method takes less than 

1 s for computing the matching cost for a single image pair. 

Secondly, as mentioned before, the positive effect of image seg- 

mentation has been shown in many stereo matching algorithms. 

However in the methods of hard constraint, an appropriate scale of 

segmentation is hard to find for different scenarios. In the meth- 

ods of soft constraint, optimizing the higher-order cliques is diffi- 

cult and time consuming. To make a tradeoff, we adopt an adaptive 

smoothness penalty for each pair of neighboring pixels that de- 

pends on multi-scale segmentations. If two neighboring pixels are 

always in same segment with different segmentation scales, they 

are naturally expected to be assigned as a same label. 

2. Matching cost 

Following the definition of [16] , the first step of a typical stereo 

algorithm is computing the matching cost C ( p , d ) at each position 

p for all disparities d . For example, the sum of absolute differences 

C(p , d) = 

∑ 

q ∈N p 
| I L (q ) − I R ( qd ) | (1) 

1 http://vis-www.cs.umass.edu/lfw/ . 

aims at measuring the cost associated with matching a patch from 

the left image whose center is located at q in the original image, 

with a patch from the right image, whose center is located at qd 

in the original image. Here N p is the set of locations within a fixed 

rectangular window centered at p . I L ( q ) and I R ( q ) are image inten- 

sities at position q of the left and right image, respectively. The d 

means that if the center point of left image is q = (x, y ) , then the 

center point of right image is qd = (x − d, y ) . 

This work aims at solving the matching problem by a super- 

vised learning approach through amount of samples. Different with 

[16] , where a convolutional neural network was used to predict the 

degree of two image patches matching, we use convolutional neu- 

ral networks to embed the image patches into Euclidean space, and 

matching cost is simply corresponded to the Euclidean distance be- 

tween two features. 

Our method uses two deep convolutional neural networks, han- 

dling the left and right image patches, respectively. As Fig. 1 shows, 

the blue network processes the left image patches, and the red 

network processes the right image patches. We use a triplet-based 

loss function to train the networks, where the triplets consist of 

two matching image patches and a mismatching image patches. 

The loss aims to separate the positive pair from the negative by 

a distance margin. 

2.1. Creating the training dataset 

As Fig. 1 shows, a training sample includes three image patches, 

one from the left and the other two from the right image, which 

can be denoted as 

< P 15 ×15 (p ) , P 

′ p 
15 ×15 

(q ) , P 

′ n 
15 ×15 (r ) > (2) 

where P 15 ×15 (p ) is a 15 × 15 patch from the left image, whose 

center is located at p in the original image. Similarly, P 

′ p 
15 ×15 

(q ) 

and P 

′ n 
15 ×15 

(r ) are the positive and negative sample, which are 

15 × 15 patches from the right image, centered at q and r in the 

original image, respectively. For each location p = (x, y ) where the 

true disparity d is known, we extract one positive P 

′ p 
15 ×15 

(q ) and 

one negative sample P 

′ n 
15 ×15 

(r ) from the right image. 

Similarly to [16] , a positive sample is obtained by setting 

q = (x − d + o pos , y ) (3) 

where o pos is chosen randomly from the set {−P hi , . . . , P hi } . 
Similarly, a negative sample is extracted by 

q = (x − d + o neg , y ) (4) 

where o neg is chosen randomly from the set 

{−N hi , . . . , −N lo , N lo , . . . , N hi } . P hi , N lo , N hi are hyperparameters 

of the method. 

2.2. Triplet loss 

As mentioned above, the triplet loss aims at shortening the L2 

distance of the matching samples and enlarging it between mis- 

matching samples. Suppose that the embedding is represented by 

f (P) , f ′ (P 

′ ) ∈ R d , corresponding to the left network and right net- 

work, respectively. They embed the image patches P and P 

′ into a 

d -dimensional Euclidean space. Here we want to ensure that an 

left image patch P of a specific position is closer to its matching 

right image patch P 

′ p than it is to any mismatching right image 

patch P 

′ n . This can be mathematically expressed as 

‖ f (P) − f ′ (P 

′ p ) ‖ 

2 
2 + m < ‖ f (P) − f ′ (P 

′ n ) ‖ 

2 
2 , 

∀ (P , P 

′ p , P 

′ n ) ∈ �
(5) 

where m is a margin that is enforced between matching and mis- 

matching pairs. � is the set of all possible triplets in the training 

set and has cardinality N . 
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