
ARTICLE IN PRESS

JID: NEUCOM [m5G; June 17, 2017;1:28]

Neurocomputing 0 0 0 (2017) 1–10

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Node-level parallelization for deep neural networks with conditional

independent graph

�

Fugen Zhou

a , Fuxiang Wu

a , ∗, Zhengchen Zhang

b , Minghui Dong

b

a Beihang University, XueYuan Road No. 37, HaiDian District, Beijing, China
b Institute for Infocomm Research (I 2 R), Agency for Science, Technology and Research, Singapore

a r t i c l e i n f o

Article history:

Received 13 August 2016

Revised 26 February 2017

Accepted 3 June 2017

Available online xxx

Communicated by Dr. Guan Ziyu

Keywords:

Node-level parallelization

Deep neural networks

Conditional independent graph

OpenMP

Concurrent kernels

a b s t r a c t

Deep neural networks require high performance computing and highly effective implementation to con-

strain the running time into a reasonable range. We proposed a novel node-level parallelization, con-

ditional independent parallelization, of the forward and backward propagations to improve the level of

concurrency. The propagations exploit a conditional independent graph (CIG) built in O (N) times, which

consists of conditional independent sets of nodes. Each set in the CIG is sequentially visited, while the

nodes in the set are calculated concurrently. Besides, we analyze the properties of the CIG and prove

the correctness of the propagations with the CIG, then study the theoretical speedup ratios of the par-

allelization. Moreover, this parallelism can be applied to arbitrary structures of neural networks without

influencing convergence, which only needs a conditional independent graph. It can be further integrated

into other frameworks with batch-level and data-level parallelism to improve the level of concurrency.

Since modern GPU supports concurrent kernels, the parallelization can also be implemented on GPU di-

rectly. To verify the parallelization in experiments, we implement an autoencoder, a dependency parser

and an image recognizer with the parallelization and test them on a 4-core CPU I7 4790K with 32 GB

memory. The results demonstrate that it can achieve maximum speedups of 3.965 × for the autoencoder,

of 3.106 × for the parsing and of 2.966 × for the recognizer.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, deep learning, which is a subfield of machine learning,

has attracted significant attention in the community and achieved

extraordinary results in speech recognition [1] , natural language

processing [2] , computer vision [3] , etc. By exploiting deep-layered

hierarchical architectures, deep learning can efficiently abstract

high-level pattern from data. There are two typical structures of

deep learning: feedforward neural networks (FNNs) and recurrent

neural networks (RNNs). FNNs include feedforward convolutional

neural networks, which are acyclic and widely used in visual pro-

cessing [4,5] . However, RNNs take their last output and the next el-

ement in an input sequence as inputs, which will lead to forming

directed cycles. Therefore, RNNs can process arbitrary sequences,

and are successfully applied in speech recognition [6] , nature lan-

� This work was sponsored in part by National Natural Science Foundation of

China (61233005).
∗ Corresponding author.

E-mail addresses: zhfugen@buaa.edu.cn (F. Zhou), fxwuedu@buaa.edu.cn ,

fxwuedu@buaa.edn.cn (F. Wu), zhangzc@i2r.a-star.edu.sg (Z. Zhang), mhdong@i2r.a-

star.edu.sg (M. Dong).

guage processing (NLP) [2,7] , etc. Normally, neural networks (NNs)

require two propagating stages: the forward propagation stage, in

which neurons are orderly updated to generate output, and back-

ward propagation stage where the gradients of weight matrices of

a neuron are computed in a revert order to train the neural net-

works. Besides, a gradient descent algorithm is exploited to train

the neural networks, such as stochastic gradient descent (SGD) [8] ,

adaptive gradient descent algorithm (ADAGRAD) [9] , mini-batch

stochastic gradient descent (mini-batch SGD) [10] , etc.

Since the computational load of neural networks is very high,

especially for training, many parallel devices are exploited to ac-

celerate that computing. In fine grain parallelism, as the com-

puting of neural networks mainly composed of the operators be-

tween matrices and vectors, the acceleration can be well tackled by

highly optimized basic linear algebra subroutines, such as the Intel

MKL packages or GPUs libraries like cuBLAS and cuDNN. In coarse

grain parallelism, since the network topology for a problem is un-

known, the batch-level parallelization strategy [11] is widely used

in the community. The strategy is commonly adopted in mini-

batch training, where the evaluations for each sample in a mini-

batch are unordered and commutative so that they can be eval-

uated in parallel directly. Moreover, there is a native node-level

http://dx.doi.org/10.1016/j.neucom.2017.06.002

0925-2312/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: F. Zhou et al., Node-level parallelization for deep neural networks with conditional independent graph, Neu-

rocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.06.002

http://dx.doi.org/10.1016/j.neucom.2017.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.13039/501100001809
mailto:zhfugen@buaa.edu.cn
mailto:fxwuedu@buaa.edu.cn
mailto:fxwuedu@buaa.edn.cn
mailto:zhangzc@i2r.a-star.edu.sg
mailto:mhdong@i2r.a-star.edu.sg
http://dx.doi.org/10.1016/j.neucom.2017.06.002
http://dx.doi.org/10.1016/j.neucom.2017.06.002

2 F. Zhou et al. / Neurocomputing 0 0 0 (2017) 1–10

ARTICLE IN PRESS

JID: NEUCOM [m5G; June 17, 2017;1:28]

parallel strategy, which is finer than batch-level parallelization.

TensorFlow [12] keeps track of dependencies of a node, which rep-

resents a computation, such as matrix multiply, and calculate that

node if all dependencies have been executed. Thus, there may be

several nodes that are ready to compute simultaneously . How-

ever, similar to the driver overhead problem in the general-purpose

graphics processing unit (GPGPU) [13–15] , the native node-level

parallelization may suffer that problem. Since the parallelization

directly tracks the dependencies of a node, the system needs to

maintain state variants for each node, which should be thread-

safe. Moreover, the system needs to check each node in a node set,

which has not been executed, to schedule them. Thus the overhead

is high, which may degrade the speedup ratio of the system.

In this paper, we propose a conditional independent extract-

ing algorithm for node-level parallelism. In the algorithm, given a

computational graph transformed from the neural networks, a con-

ditional independent graph is built in O (n) times to extract con-

ditional independent sets of operator nodes in the computational

graph. And then each element in the set can be concurrently ex-

ecuted in both forward and backward propagation stages. To ver-

ify efficiency and effectiveness of the parallelization, we utilize two

NLP applications and an image application, namely, an autoencoder

for paragraphs, a dependency parser and an image recognizer, and

the results show that the parallelization can help to speed-up pro-

cesses in training and testing efficiently.

2. Related work

There are some deep learning frameworks accelerated by ex-

ploiting GPU, multi-threading or distributed computing, such as

TensorFlow [12,16] , Caffe [17] , Theano [18] , Torch7 [19] , etc. We

compare the parallel ways of them as following:

• TensorFlow represents a deep learning algorithm as a dataflow

graph and supposes multiple concurrent executions of sub-

graphs of the dataflow graph, which are manually defined by

steps, invocations of the API. Moreover, it exploits the native

node-level parallelism, fine grain parallelism and batch-level

parallelism to speed up the calculation.

• Caffe is layer-wise design, where the layer is similar to the node

in TensorFlow. Caffe mainly calculates the operations in layers

with GPU, which is fine grain parallel.

• Theano leverages multi-core CPU architectures only in BLAS and

Conv2D, and automatically generates CUDA code for the mathe-

matical operations of nodes. It adopts fine grain parallelization.

• Torch7 utilizes two parallel libraries: OpenMP and CUDA. How-

ever, as described in the work of Collobert et al. [19] , Torch7

mainly uses those libraries in the tensor library and neural

networks, which indicates that Torch7 adopts fine grain paral-

lelism.

Therefore, some frameworks do not suppose the batch-level

parallelism, but the work of Tallada et al. [11] demonstrates that

the batch-level parallelism is independent of the supporting li-

braries so that it can be integrated into the frameworks directly.

Besides, the work of Chambers et al. [20] and TensorFlow simul-

taneously execute independent operations, which complement the

batch-level parallelism and fine grain parallelism. However, there

are some intrinsic conditional independent properties in the com-

putational graph, which can be further employed to accelerate

the frameworks in node-level. Thus, our work complements their

works in node-level and automatically extracts conditional inde-

pendent nodes of the computational graph in O (n) times to im-

prove the node-level parallelization.

3. Conditional independent parallelization

The deep learning model normally consists of many layers of

non-linear processing units (neural networks), and it can be ex-

pressed as a dataflow graph or computational graph. Given the in-

put data, the model is evaluated via forward propagation, which

traverses nodes of the graph from inputs to outputs. For model

training, after executing the forward propagation, the backward

propagation, which traverses the nodes from outputs to inputs, is

invoked to compute gradients of the parameters. And then the pa-

rameters are updated with a type of gradient descent algorithms.

3.1. Computational graph

A computational graph G = { V, E} consists of a set of nodes

(vertexes) v i ∈ V and a set of edges e ij ∈ E. G is a directed graph

which represents the data flowing and manipulating of a deep

learning model. Each v i represents a computation of the i th node,

such as add, multiply, tanh, etc., and e ij represents data flows from

the parent node v i (output) to the child node v j (input). Fig. 1 il-

lustrates an example of the computational graph G of the 3-gram

neural network language model (NNLM) [21] , where e i is an em-

bedding vector of the i th word, and N is the size of vocabulary. Be-

sides M ·, · and V ·, · are 2-D matrix as described in Arisoy et al. [21] .

Since the time of executing a different node may be differ-

ent, we denote that of a node v i as a function t (v i). Thus, run-

ning the total computational graph G consumes
∑

v i ∈ V t(v i) with-

out accelerating (Since we only consider the performance on a

single-machine, so ignore the time of data communication.). Be-

sides, we assume the input data have been transferred to memory,

thus t(v k) = 0 if v k is an input node (such as the nodes v 1 − v 6 , v 11

and v 14 in Fig. 1).

3.2. Conditional independent graph

The computational graph is analogous to a Bayesian net-

work [22] , where a node is independent with the other nodes

given its Markov blanket. Inspired by the d-separate definition in

Bayesian network, we can extract sets of conditional independent

nodes from an arbitrary computational graph. For example, v 12 and

v 13 are conditionally independent in Fig. 1 , and they can be ex-

ecuted concurrently given the set of nodes v 1 –v 6 , v 11 , and v 14 .

Therefore, the following Definition 1 describes conditional inde-

pendent graph which stores the sets of conditional independent

nodes for a directed acyclic graph (DAG).

Definition 1. Given a computational graph G , its conditional in-

dependent graph G is a set of the conditional independent sets

(CIS), namely, { S 1 , S 2 , . . . , S d (G) }, where d (G) is the size of G , |G | ,
and owns following properties,

(a) Independent: a CIS S i is topology-independent from other CIS

S j iif j > i .

(b) Parallel: the nodes of a CIS S i are topology-independent with

each other and ready to be executed when the nodes in

∪ k < i S k have been executed or given.

where the notation topology-independent v i from v j refers to

no incoming edge from v j to v i . For simplifying, we will ex-

press topology-independent and topology-dependent as indepen-

dent and dependent respectively in the following part. The graph

will group the nodes into different sets to support concurrently

running. If the computational graph G is built from bottom to top,

the node v i ∈ V is independent of the nodes { v j } j > i , which is

similar to the partially causal sequence introduced by Schmidhu-

ber [23] , and we denote the property of V as well-form. Thus, we

assume that V is well-form (If not, we sort them via traversing the

Please cite this article as: F. Zhou et al., Node-level parallelization for deep neural networks with conditional independent graph, Neu-

rocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.06.002

http://dx.doi.org/10.1016/j.neucom.2017.06.002

Download English Version:

https://daneshyari.com/en/article/4947006

Download Persian Version:

https://daneshyari.com/article/4947006

Daneshyari.com

https://daneshyari.com/en/article/4947006
https://daneshyari.com/article/4947006
https://daneshyari.com

