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a b s t r a c t 

In this paper, stabilization is presented for a networked control system with actuator saturation and 

network-induced delays. A method is exploited at updating steps of control signal rather than sampling 

steps in the networked control system under actuator saturation. A network-based controller is designed 

under the limitation of actuator saturation. With a cone complementary linearization approach, a pre- 

sented scheme is also used to estimate the domain of attraction for the networked control system. A 

numerical simulation is provided to show the effectiveness and correctness of the method in this paper. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, actuator saturation has been discussed for con- 

trol systems in large quantities of literatures [1,2] . Owing to in- 

put limitations, physical actuators are subject to input saturation 

in control systems [3] . Note that actuator saturation readily leads 

to plant’s starting with less energy, which can cause systems to 

be unstable [4] . In order to avoid getting worsen and even lost of 

stability for a system, actuator saturation has to be considered in 

the process of designing the close-loop system [5] . To deal with 

actuator saturation, some measures for estimating the domain of 

admissible initial states for control systems have been investigated 

in monograph [6] . In [7] , a method based on linear matrix in- 

equalities is derived to estimate the domain of attraction for a sat- 

urated linear feedback system. Note that network-induced delays 

are main problems in NCSs [8–10] . Output feedback delay com- 

pensation control has been investigated for NCSs with random de- 

lays [11] . Fuzzy delay compensation control has also been con- 

sidered for T–S fuzzy systems over networks in [12] . Considering 

time-varying delays in control systems with actuator saturation, an 

advanced and less conservative delay-range-dependent method is 

presented in [13] . With nested actuator saturation, discrete-time 
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linear systems are discussed in terms of stability conditions and 

the estimate of the domain of attraction in [14] . Recently, an auxil- 

iary time-delay feedback technique is introduced to cope with sta- 

bilization of neutral time-delay systems with actuator saturation 

[15] . Furthermore, actuator saturation also appears in NCSs, which 

is very interesting for stability of NCSs with actuator saturation and 

remains challenging up to the present. 

There are considerable benefits and advantages for NCSs than 

traditional point-to-point control systems, such as cost-saving [16] , 

resource-sharing [17] , flexibility-improving [18] . With introduction 

of networks, issues and challenges emerge in forms of time delays 

[19–21] , data-packet losses [22,23] , communication noise [24,25] , 

bandwidth scheduling and signal quantization [26–28] . Note that 

time delays and data-packet losses are the two most important 

ones, and many attentions have been devoted to solve them in 

both continuous-time systems [29,30] and discrete-time systems 

[31–34] , for several years. Mainly for discrete-time systems, two 

kinds of methods on time delays appear in related works. The 

one kind is a deterministic bound method which places bounds 

on delay-time and lost-data-packets [35,36] . The other one is a 

stochastic method in which network-induced delays are modeled 

as certain probability distributions [37–40] . Stabilization analysis of 

NCSs with time delays and data-packet losses is presented in [41] . 

In [41] , a method guarantees debasement of Lyapunov functions at 

each control signal updating step, which is less conservative then 

traditional methods which guarantee the debasement of Lyapunov 
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Fig. 1. Networked control system with actuator saturation. 

functions at sampling steps. Actuator saturation has not been fully 

investigated for NCSs in [41] , the main goal of this work is to 

fill this gap, i.e., to extend the results in NCSs subject to actuator 

saturation. 

Considering actuator saturation in a NCS with network-induced 

delays, the domain of attraction is estimated in this paper. By guar- 

anteeing debasement of Lyapunov functions at each control signal 

updating step, an improved stability criterion is derived for the 

NCS with actuator saturation. Thereby, a corresponding stabiliza- 

tion controller design technique is proposed for the NCS subject 

to actuator saturation. A cone complementary linearization (CCL) 

approach is utilized to cope with nonlinear matrix equalities, and 

the domain of attraction for NCSs is also obtained subsequently. 

The effectiveness and merit of the proposed method are demon- 

strated by a numerical example. Specifically, main contributions of 

this paper are summarized as follows: 

(i) Stabilization conditions of NCSs subject to actuator satura- 

tion and time delays are proposed by fully analysis in this 

paper. 

(ii) A less conservative method is exploited to analyze the prob- 

lems on NCSs under actuator saturation at updating steps of 

control signal. 

(iii) An effective scheme is used to estimate the domain of at- 

traction for NCSs with a cone complementary linearization 

approach. 

Notation : Notations appeared in this paper are normally stan- 

dard. In the sequel, if not explicitly stated, matrices are assumed 

to have compatible dimensions. I [ i, j] represents the integer set 

{ i, i + 1 , . . . , j} , and Z 

+ is defined as a positive integer set. R 

n 

(or R 

m ) denotes n (or m ) dimensional Euclidean space. Notation 

X > Y ( X ≥ Y ) means that matrix X − Y is positive definite ( X − Y 

is semi-positive definite). For any matrix A, A 

T and A 

−1 mean the 

transpose of matrix A and the inverse of matrix A, respectively. 

diag{ M 1 M 2 . . . M r } is the shorthand of a block diagonal matrix 

with diagonal blocks being the matrices M 1 , M 2 , . . . , M r . 
∗ is used 

as an ellipsis of symmetric block matrices. 

2. Problem formulation 

In this paper, the plant of NCSs is described as the following 

discrete-time system: {
x (k + 1) = Ax (k ) + Bu (k ) , k > 0 , 

u (k ) = F x (k ) , 
(1) 

where A, B and F are system matrices with compatible dimensions, 

x (k ) ∈ R 

n represents the state vector, u (k ) ∈ R 

m denotes the control 

input. The structure of NCSs with actuator saturation is shown in 

Fig. 1 . 

The dash line area represents actuator, and it consists of a 

buffer, a zero order holder (ZOH) and a saturation function. In or- 

der to analyze the actuator with saturation function conveniently, 

a function “sat” is appeared with appropriate dimensions in our 

subsequent deduction. Thereby, the function “sat” is defined as fol- 

lows: 

sat (u ) = 

[ 
sat (u 1 ) , sat (u 2 ) , . . . , sat (u m 

) 
] T 

, 

where 

sat (u i ) = sgn (u i ) min { 1 , | u i |} . 
Considering both actuator saturation and network-induced de- 

lays in the NCS framework, system (1) is established as follows: {
x (k + 1) = Ax (k ) + B sat (u (k − τk )) , k > 0 , 

x (s ) = ϕ(s ) , s ∈ [ −τ2 , 0] , 
(2) 

where x (k ) ∈ R 

n is the state vector, u (k − τk ) ∈ R 

m is the control 

input with time-varying delay τ k , A and B are constant matrices, 

ϕ( s ) is the initial state in [ −τ2 , 0] . Note that τ k in system (2) is a 

time-varying input delay in NCSs. The following two assumptions 

are given as 

τ1 ≤ τk ≤ τ2 , τk +1 − τk ≤ μ, (3) 

where τ 1 and τ 2 are the lower and upper bounds for τ k , respec- 

tively, and μ is the delay variation rate. 

If a new control signal arrives at the ZOH at time step k , then 

the time step k is called an updating step, and a holding step is 

defined as that the control signal does not reach correspondingly. 

When data packets are lost or in wrong orders, the ZOH used 

in NCSs chooses the newest available control signal in terms of 

controlling the plant. If a time step k + 1 is a holding step, then 

the last control signal will be applied into systems, and equal- 

ity τk +1 = τk + 1 holds in this situation. Correspondingly, if a time 

step k + 1 is an updating step, a new control signal time stamp 

k + 1 − τk +1 must be newer than the last one k − τk . Thereby, in- 

equality k + 1 − τk +1 ≥ k − τk + 1 is achieved, i.e., τk +1 ≤ τk holds. 

Moreover, two propositions are described in the following. 

Proposition 1. For time-varying delay τ k , the following property is 

given as {
τk +1 ≤ τk , k + 1 is an updating step , 
τk +1 = τk + 1 , k + 1 is a holding step . 

Note that let K := { k 1 , k 2 , . . . } ( K ⊂ Z 

+ ) denote a time-index sequence 

of updating steps, and δk s � k s +1 − k s denotes the holding step num- 

ber until time step k s . 

Proposition 2. Variable δk s complies to the following limitation: 

0 ≤ δk s ≤ ˆ δ � max 
k s ∈K 

(δk s ) , 

which implies that one step is updating step for every ˆ δ time steps at 

least. Note that ˆ δ makes a reflection on comprehensive effect of the 

time-varying delays, maximum consecutive packet losses and packet 

in-wrong-order. 

The following networked controller is taken as 

u ( k − τk ) = F x ( k − τk ) . (4) 

Then system (2) is rewritten as follows: 

x (k + 1) = Ax (k ) + B sat (F x (k − τk )) , (5) 

where F ∈ R 

m ×n is the feedback gain. Let f i denote the i th row of 

F , and 

L (F ) := 

{
x ∈ R 

n : | f i x | ≤ 1 , i = 1 , 2 , . . . , m 

}
, (6) 

where L (F ) is the region in which the state of system (5) abides 

by linear variation, i.e., the linear region of saturation, as F is the 

feedback matrix. 

The following definition on the domain of attraction is shown. 
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