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a b s t r a c t 

Multiple kernel clustering (MKC) algorithms usually learn an optimal kernel from a group of pre-specified 

base kernels to improve the clustering performance. However, we observe that existing MKC algorithms 

do not well handle the situation that kernels are corrupted with noise and outliers. In this paper, we 

first propose a novel method to learn an optimal consensus kernel from a group of pre-specified ker- 

nel matrices, each of which can be decomposed into the optimal consensus kernel matrix and a sparse 

error matrix. Further, we propose a scheme to address the problem of considerable corrupted kernels, 

where each given kernel is adaptively adjusted according to its corresponding error matrix. The inexact 

augmented Lagrange multiplier scheme is developed for solving the corresponding optimization problem, 

where the optimal consensus kernel and the localized weight variables are jointly optimized. Extensive 

experiments well demonstrate the effectiveness and robustness of the proposed algorithm. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Clustering algorithms aim to find a meaningful grouping of 

samples x in an unsupervised manner for machine learning [1] , 

computer vision [2,3] and data mining [4,5] fields. Kernel-based 

clustering methods, such as kernel k-means [6] , has the advantage 

of handling non-linear separable clusters and usually achieve im- 

proved clustering performance. The performance of these kernel- 

based clustering methods is highly dependent on kernel selection. 

In a practical scenario, we can construct various kernels because 

many different kernel functions exist with different parameters. 

Since the information of these pre-specified kernels are unknown 

in advance, we have difficulty in selecting suitable kernels for 

the clustering task. Multiple kernel clustering methods, which 

extend the traditional single kernel method into a multiple kernel 

method, have been studied actively and have shown state-of-the- 

art results in recent years. Traditionally, multiple kernel clustering 

methods learn the optimal kernel through the linear or nonlinear 

combination of multiple base kernels. Huang et al. [7] seek an 

optimal combination of affinity matrices so that it is more immu- 

nity to ineffective affinities and irrelevant features. Huang et al. 

[8] propose a multiple kernel clustering algorithm by incorporating 

multiple kernels and automatically adjusting the kernel weights. 

In [9] , the kernel weights are assigned to the information of the 

∗ Corresponding author. 

E-mail addresses: liteng09@nudt.edu.cn , liteng09@163.com (T. Li), 

yongdou@nudt.edu.cn (Y. Dou), 1022xinwang.liu@gmail.com (X. Liu), 

zhaoyang10nudt@163.com (Y. Zhao), lvqi@nudt.edu.cn (Q. Lv). 

corresponding view and a parameter is used to control the sparsity 

of these weights. In [10] , they propose a localized multiple kernel 

clustering method, which is dedicated to the dataset with varying 

local distributions. Gönen and Margolin [11] combine kernels 

calculated on the views in a localized way to better capture 

sample-specific characteristics of the data. Du et al. [12] present 

a robust multiple kernel k-means algorithm by replacing the 

sum-of-squared loss with � 2, 1 -norm. 

Nevertheless, in a practical scenario, data may be corrupted 

with noise and outliers, which results in the corresponding kernel 

being corrupted as well. Besides, once these pre-specified kernels 

are corrupted with noise and outliers, the optimal kernel is likely 

to be corrupted, which may degrade the clustering performance 

consequently. Moreover, in multiple kernel clustering method, we 

usually construct a number of kernels to exploit the advantage of 

the kernel method as much as possible. If the original data have 

been corrupted by noise and outliers, the number of corrupted ker- 

nels will increases, which may worsen the performance of multiple 

kernel clustering. Since the optimal kernel is learned from these 

pre-specified kernels, once the number of corrupted kernels in- 

creases, a fatal effect may occur on the final optimal kernel learn- 

ing. In addition, we have observed that existing multiple kernel 

learning methods do not sufficiently consider the corrupted situ- 

ation among these kernels. This could result in learning the opti- 

mal kernel inaccurately and degrading the clustering performance. 

In this paper, we propose a robust multiple kernel clustering with 

corrupted kernels method. Compared with previous studies, our 

method is better at capturing the underlying structure of the 

data and can effectively address the situation where considerable 
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kernels are corrupted with noise and outliers. To the best of our 

knowledge, this study is the first to learn the optimal consensus 

kernel based on that each pre-specified kernel from a different ker- 

nel function can be decomposed into the optimal consensus kernel 

matrix and the sparse error matrix. In summary, we highlight the 

main contributions of this paper as follows: 

• We propose a novel method for learning an optimal consensus 

kernel based on that each pre-specified kernel from a different 

kernel function can be decomposed into the optimal consensus 

kernel matrix and the sparse error matrix. 

• To address the problem of considerable corrupted kernels, we 

enable the utilization of each given kernel to be adaptively ad- 

justed by assigning a weight variable to each error matrix. 

• The optimal consensus kernel and the localized weight vari- 

ables are obtained by solving a constrained nuclear norm and 

an � 1 -norm minimization problem, in which each subproblem 

is convex and can be solved efficiently when optimizing one 

variable while fixing other variables through inexact augmented 

Lagrange multiplier scheme. 

• We conduct comprehensive experiments to compare the pro- 

posed approach with existing state-of-the-art multiple kernel 

clustering methods on three benchmark datasets. The exper- 

imental results demonstrate the superiority of the proposed 

method. 

The remainder of this paper is organized as follows. We intro- 

duce the proposed multiple kernel clustering with Corrupted Ker- 

nels algorithm (MKCCK) in Section 2 . An efficient alternate opti- 

mization algorithm is proposed in Section 3 , where the details of 

the algorithm are also provided. The discussion are presented in 

Section 4 . We compare the clustering performance of MKCCK and 

state-of-the-arts multiple kernel clustering algorithms in Section 5 , 

where the robustness study and parameter sensitivity are also pre- 

sented. Finally, conclusions are drawn in the Section 6 . 

2. Multiple kernel clustering with corrupted kernels 

In this section, we present multiple kernel clustering by learn- 

ing an optimal consensus kernel from the pre-specified kernels. To 

address the problem of corrupted kernels, we further enable the 

utilization of each pre-specified kernel to be adaptively adjusted. 

2.1. Formulation 

Given N samples, we construct m kernels K 1 , K 2 , . . . , K m 

, which 

are N × N matrices, from m different kernel formulations, to learn 

an optimal consensus kernel K from these pre-specified base ker- 

nels and cluster them into their respective groups. 

To capture the underlying structure of the correct information 

while removing the noise information that may degrade the clus- 

tering performance from the consensus kernel, we consider the 

problem under the following conditions: (1) The consensus kernel 

is low-rank and tends to be block diagonal, with minimal noise. (2) 

Noise and outliers might be introduced in data acquisition, thus, a 

fraction of data entries might be corrupted in these base kernels. 

Considering these conditions, we formulate the unified optimiza- 

tion framework as follows: 

min 

K, E p 
rank (K) + λ

m ∑ 

p=1 

‖ 

E p ‖ � 
, s.t. ∀ p, K p = K + E p , (1) 

where the norm ‖·‖ � on the error matrix E depends the prior 

knowledge on the pattern or corruptions, and λ is a trade-off pa- 

rameter between the two terms. In a practical scenario, the norm 

‖·‖ 1 represents the randomly element-wise corruptions. To address 

this problem generally, we formulate our framework based on the 

norm ‖·‖ 1 . Equipped with � 1 -norm of E , we can reformulate the 

unified optimization framework as follows: 

min 

K, E p 
rank (K) + λ

m ∑ 

p=1 

‖ 

E p ‖ 1 , s.t. ∀ p, K p = K + E p . (2) 

The optimization problem (2) is difficult to solve because of the 

discrete nature of the rank function. By replacing the rank function 

with the nuclear norm, we convert the problem into the follow- 

ing convex optimization, which provides a good surrogate for the 

problem (2) : 

min 

K, E p 
‖ 

K ‖ ∗ + λ
m ∑ 

p=1 

‖ 

E p ‖ 1 , s.t. ∀ p, K p = K + E p . (3) 

As the problem (3) shows, the consensus kernel K is learned 

from these pre-specified kernels K p . However, we cannot guarantee 

that all these pre-specified kernels take the equal corrupted infor- 

mation in practice. Based on the assumption that some of the ker- 

nels are severely corrupted by noise and outliers, the norm value 

of the error matrix becomes extremely large and directly influ- 

ences the objective function in problem (3) . To alleviate the ef- 

fect of the corrupted kernel on the consensus kernel learning and 

to recover the underlying structure of the consensus kernel cor- 

rectly, we assign a localized weight variable αp to each error ma- 

trix. Therefore, we formulate the unified optimization framework 

as 

min 

K, E p , αp 

‖ 

K ‖ ∗ + λ
m ∑ 

p=1 

αp ‖ 

E p ‖ 1 s.t. ∀ p, K p = K + E p , 

m ∑ 

p=1 

αγ
p 

= 1 , αp ≥0 , 0 < γ < 1 , (4) 

where αp ≥ 0 is used to control the weight of each error matrix 

and 

∑ 

αγ
p = 1 is used to avoid a trivial solution. As observed in 

problem (4) , once a pre-specified kernel is severely corrupted by 

noise or outliers, the corresponding αp is assigned with a small 

weight so as to minimize the objective function. Also, once a pre- 

specified kernel has a good underlying data structure, the corre- 

sponding αp is assigned with a large weight to reduce the influ- 

ence induced by other corrupted kernels. 

3. Alternate optimization 

We propose to address the introduced equality constraints 

through an inexact augmented Lagrangian method (inexact ALM) 

[13] that can be formed as 

L (K, E p , αp , Y p , μ) = ‖ 

K ‖ ∗ + λ
m ∑ 

p=1 

αp ‖ 

E p ‖ 1 + 

m ∑ 

p=1 

〈 Y p , K p − K − E p 〉 

+ 

μ

2 

m ∑ 

p=1 

‖ 

K p − K − E p ‖ 

2 
F , (5) 

where μ is the penalty factor that controls the rate of convergence 

of the inexact ALM, Y p is the Lagrange multiplier for the constrain 

D p = A + E p , 〈·〉 denotes the inner-product operator and ‖·‖ F is the 

Frobenius norm. The optimization problem can be solved by Inex- 

act ALM. The optimization procedure is shown in Algorithm 1 . 

3.1. Optimizing K w.r.t E, α are fixed 

When other variables are fixed, the subproblem is 

K 

(k +1) = arg min 

K 

L (K, E (k ) 
p , α(k ) 

p , Y (k ) 
p , μ(k ) ) (6) 

which can be solved by Singular Value Threshold [14] method 
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