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a b s t r a c t 

This paper studies the stabilization problem for networked control systems (NCSs) affected by data quan- 

tization, time-varying transmission intervals, time-varying transmission delays and communication con- 

straints. Time-varying transmission intervals and delays, by limiting the upper and lower bounds of 

which, can be described by a two-dimensional convex region. Combined with the coupling role of data 

quantization, communication constraints mean that only one node can occupy the network and send its 

quantized values in each transmission. The order in which node transmits its quantized values is deter- 

mined by a given periodic network protocol. By introducing a variable called proportionality coefficient 

of saturation value in well-known zoom strategy to deal with the complex coupling relationship between 

system states and quantized variables, some sufficient conditions are derived for reaching asymptotic sta- 

bility of NCSs under properly designed quantizer parameters. A simulation example is given to illustrate 

the effectiveness of the theoretical analysis. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The introduction of the network in the control systems has 

brought us a lot of convenience and advantages, such as decreased 

the complexity, increased the flexibility, improved the convenience 

of installation and maintenance, and reduced wiring and cost. 

However, networking the control systems also brings new chal- 

lenges which can be divided into six categories in general: (i) data 

quantization; (ii) data packet loss; (iii) time-varying transmission 

intervals; (iv) time-varying transmission delays; (v) communi- 

cation constraints, which impose that not all of the sensor and 

actuator signals can be transmitted simultaneously; (vi) network- 

induced external disturbance. Combined with the performance 

constraints of the controlled object itself, such as actuator satura- 

tion, control algorithms should be pursued to handle with these 

communication imperfections and constraints simultaneously [1,2] . 

In recent years, much effort has been dedicated to the stability 

analysis of NCSs just affected by one or two of these phenomena 

[3–19] . For NCSs with (i)–(iii), a binary variable modeling stochas- 

tic sampling process and logarithmic quantization is introduced 

to describe the networked communication process in [20] . A ran- 

domly switched Takagi–Sugeno fuzzy system with multiple input- 
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delay subsystems is proposed to model the nonlinear NCSs with 

(i), (ii) and (v) in [21] . The problem of achieving parameterized 

input to state stability with respect to (i), (ii) and (vi) for NCSs is 

studied in [22] . Delta operator approach is adopted in [23] to deal 

with the stabilization problem of NCSs with (i), (ii) and actuator 

saturation. Ne š i ć and Liberzon [24] formulate a unified controller 

design framework for NCSs with types (i), (iii) and (v). Cloosterman 

et al. [25] proposes a discrete-time model for NCSs that incorpo- 

rates imperfections (ii)–(iv). Focusing on NCSs that are subject to 

(iii)–(v), Donkers et al. [26] presents a new modeling framework to 

derive the stability results. Under the influence of (iv)–(vi), the ul- 

timate boundedness of the estimation error is guaranteed in [27] . 

Literature [28–31] research types (i), (ii) and (iv). All the above pa- 

pers study the stability and stabilization issues of NCSs including 

three imperfections. For four imperfections, a novel NCSs model is 

described in [32] , which includes multi-rate sampled-data, quan- 

tized signal, time-varying delay and packet dropout. In this paper, 

we will focus on the stability of NCSs with data quantization, time- 

varying transmission intervals, time-varying transmission delays 

and communication constraints, i.e., types (i), (iii), (iv) and (v). 

Donkers et al. [26] proposes skillfully a convex overapproxima- 

tion method to analyze the stability of NCSs with imperfections 

(iii)–(v), but which is invalid to handle with data quantization si- 

multaneously. To achieve the stability analysis of NCSs with (i)–(v), 

Loon et al. [33] promotes this convex overapproximation method, 

which ensures the stability under both uniform quantizer and 

logarithmic quantizer. Comparing the asymptotic stability under 
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logarithmic quantizer with infinite quantization level and practical 

stability under uniform quantizer in [33] , we will, by modifying the 

overapproximation procedure, pursue the asymptotic stability con- 

ditions by using a uniform quantizer with finite quantization level. 

As we know, time variability of quantizer parameters is the 

necessary condition ensuring asymptotic stability, under which the 

quantization errors can tend to zero. Zoom strategy proposed in 

[34] is a efficacious method to adjust the time-varying quantizer 

parameters. With the advantages of finite quantization level and 

adjustable variables, zoom strategy has been adopted by many 

articles to deal with the issues of quantization and data packet loss 

[19,22] , or disturbance [22] , or saturation [23] . But it has not been 

used to study the issues of (i), (iii), (iv) and (v) so far, which is 

one of the innovations of this paper. Due to the complex coupling 

relationship between system states and quantized variables, we 

introduce a variable called proportionality coefficient of saturation 

value to improve the zoom strategy, which ensures the unsatu- 

ration of the quantized variables, and guarantees that the system 

states load in the time-varying invariant regions at the same time. 

Above all, our contributions are three aspects with respect 

to earlier literature. First, a modified procedure is proposed to 

approximate the switched uncertain quantized system which is 

transferred from NCSs discussed here. Under this procedure, the 

decreasing rate of the related parameters is promoted, which 

allows that the overapproximation achieves tightness at a faster 

rate. Second, zoom strategy is adopted here to discuss the asymp- 

totic stability of NCSs affected by imperfections (i), (iii), (iv) and 

(v), which has not been studied before. Third, a variable called 

proportionality coefficient of saturation value is introduced to 

improve the zoom strategy. Under which, the complex coupling 

relationship between system states and quantized variables can 

be dealt effectively, and thus the unsaturation of the quantized 

variables and the asymptotic stability of the closed-loop system 

can be guaranteed by adjusting the quantizer parameters suitably. 

The outline of this paper is as follows. In Section 2 , we intro- 

duce the detailed model, network and problem descriptions. A 

method is given to write the NCSs model as a switched uncertain 

quantized system in Section 3 . Next, we propose an improved 

procedure to overapproximate the NCSs according to a polytopic 

system in Section 4 . In Section 5 , we obtain the conditions to 

ensure the stability of the NCSs based on LMIs, and the detailed 

proof of which is given in Section 6 . A numerical benchmark exam- 

ple is adopted to illustrate the effectiveness of the main results in 

Section 7 and conclusions are given in Section 8 . The supplemen- 

tary proofs of some lemmas and theorems are shown in Appendix. 

The notations used in this paper are very regular. R 

n denotes 

the n -dimensional Euclidean space. R 

+ and N denote the set 

of positive real numbers and positive integers, respectively. We 

denote by ‖·‖ the standard Euclidean norm in R 

n and the cor- 

responding induced matrix norm in R 

n ×n . λmax ( P ) and λmin ( P ) 

denote the maximum eigenvalue and minimum eigenvalue of ma- 

trix P , respectively. The signal diag (A 1 , . . . , A n ) is used to denote 

a block-diagonal matrix with the diagonal elements A 1 , . . . , A n . 

A 

T ∈ R 

m ×n denotes the transposed of matrix A ∈ R 

n ×m . For brevity, 

the symmetric matrix 

[ 
A B 

B T C 

] 
is sometimes written as 

[ 
A B 

∗ C 

] 
. The 

limits as s approaches t from above and below are denoted by 

lim s ↓ t and lim s ↑ t , respectively. We use co{ A } to denote the convex 

hull of a set A . The signals �·� and 	·
 indicate the integer function 

upward and downward, respectively. 

2. Model, network and problem descriptions 

2.1. Model description 

The NCSs considered here are shown in Fig. 1 , in which the 

plant is described by the following linear time-invariant (LTI) 

Fig. 1. System configuration. 

continuous-time equation: {
˙ x p (t) = A p x 

p (t) + B p ̂  u (t) 
y (t) = C p x 

p (t) , 
(1) 

where x p ∈ R 

n p denotes the plant state, ˆ u ∈ R 

n u is as the most 

recently received control variable, y ∈ R 

n y denotes the output of 

the plant, t ∈ R 

+ denotes the time, and A p , B p , C p are the given 

constant matrices with approximate dimensions. 

Due to the controller is typically implemented in a digital, and 

thus the discrete-time form, we design it as the following LTI 

discrete-time system: {
x c 

k +1 
= A c x 

c 
k 
+ B c ̂  y k 

u (t k ) = C c x 
c 
k 
+ D c ̂  y (t k ) , 

(2) 

where x c ∈ R 

n c denotes the controller state, ˆ y ∈ R 

n y is as the 

most recently received output of the plant, u ∈ R 

n u represents the 

controller output, and A c , B c , C c , D c are constant matrices. 

2.2. Network description 

(i) Data quantization. The quantizer adopted here is the same 

as the one in [34] , i.e., 

q μ(x (k )) = μ(k ) q 
(

x (k ) 

μ(k ) 

)
, (3) 

where μ(k ) ∈ R 

+ . Assume that the following conditions on q μ( ·) 
are satisfied: 

I. If ‖ x ( k ) ‖ ≤ Mμ( k ), then ‖ q μ(x (k )) − x (k ) ‖ ≤ � μ(k ) , 

II. If ‖ x ( k ) ‖ > Mμ( k ), then ‖ q μ(x (k )) ‖ > Mμ(k ) − � μ(k ) , where 

M is the saturation value and � the sensitivity. 

(ii) Time-varying transmission intervals and delays. For all 

k ∈ N , we assume that transmission interval h k and transmission 

delay τ k are all time-varying, and belong to the set � defined by 

� : = 

{
(h, τ ) ∈ R 

2 | h ∈ [ h , ̄h ] , τ ∈ [ τ , min { h, τ̄ } ) , ̄h ≥ h > 0 , 

τ̄ ≥ τ ≥ 0 

}
. 

(iii) Communication constraints. At each transmission instant 

t k , k ∈ N , the plant outputs y ( t k ) and controller outputs u ( t k ) are 

sampled and quantized, and parts of the quantized value q μ( y ( t k )) 

and q μ( u ( t k )) are transmitted through the network. Assuming that 

the quantized values arrive at time instant r k which is called the 

arrival instant. The signal transmission situation illustrated above 
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