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a b s t r a c t 

Lots of efforts have been devoted to develop effective estimation methods for parametric and nonpara- 

metric longitudinal data models. Varying coefficient regression model has received a great deal of atten- 

tion as an important tool for modeling the relation between a response and a group of predictor vari- 

ables. The varying coefficient model is particularly useful in longitudinal data analysis. A random effect 

time-varying coefficient model is proposed for analyzing longitudinal data, which is based on the basic 

principle of least squares support vector machine along with the kernel technique. A generalized cross 

validation method is also considered for choosing the tolerance level and the hyperparameters which af- 

fect the performance of the proposed model. The proposed model is evaluated through numerical studies. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Longitudinal data analysis has received a lot of attention during 

the last twenty years due to applications in various fields, such as 

economics, finance, biology, sociology, psychology, medicine and so 

on. Parametric regression models for longitudinal data have been 

well developed in the last twenty years [6,9,28] . Nonparametric 

and semiparametric regression models for longitudinal data us- 

ing kernel and spline methods have enjoyed substantial develop- 

ments in the last ten years [7,20] . On the other hand, mixed ef- 

fects models are becoming increasingly popular for longitudinal 

data. Mixed effects models constitute both fixed and random ef- 

fects. Both fixed and random effects may be included for vector 

of longitudinal covariates. In particular, linear mixed effects mod- 

els have been widely used [9,27] . The most commonly employed 

approaches for nonparametric longitudinal data analysis are non- 

parametric mixed effects models and functional regression models 

based on principal component analysis through conditional expec- 

tation (PACE) [2,18,19,31,33] . 
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Existing nonparametric mixed effects models suffer the draw- 

backs of not including the effects of covariates with time into the 

model. In fact, it is not unusual that covariates may depend on 

time progresses. A promising alternative to overcome this prob- 

lem is to consider both random effect and time-varying coefficient 

(TVC) simultaneously as in [23] . The varying coefficient model 

(VCM) was firstly proposed by [8] and further studied by [10] . 

Some more VCMs for longitudinal data analysis have been devel- 

oped and discussed. See, for example, [3,11,21,29,30,32] and [17] . 

For longitudinal data [23] considered the following random ef- 

fect TVCM, and presented an estimation procedure for the within 

subject or cluster correlation structure of the proposed model. 

y i j = β(t i j ) 
t x i j + γ t 

i z i j + εi j , i = 1 , . . . , m, j = 1 , . . . , n i , (1) 

where y ij is the response, x ij ∈ R p , β(t i j ) = (β1 (t i j ) , . . . , βp (t i j )) 
t 

is a vector of unknown smooth functions of t ij ∈ R , z ij ∈ R q is a 

vector of covariates associated with random effects, and ε ij ’s are 

measurement errors, which are assumed to be i.i.d. with E(εi j ) = 0 

and V ar(εi j ) = σ 2 . Here, γ i ’s are random effects across the sub- 

jects or clusters, which are assumed to be i.i.d. with E(γi ) = 0 and 

Cov (γi ) = �. Furthermore, γ i is independent of ε ij . 

For longitudinal data [14] considered the following TVCM with 

fixed effects, and developed a procedure of selecting the significant 
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variables. 

y i j = β(t i j ) 
t x i j + μi + εi j , i = 1 , . . . , m, j = 1 , . . . , n i , (2) 

where μi reflects the unobserved individual effect, and ε ij is inde- 

pendent of μi and x ij ∈ R p . Here, μi is time-invariant and it ac- 

counts for the individual’s unobserved ability. Model (2) is called 

as a fixed effect TVCM when μi is allowed to be correlated with 

x ij . Model (2) reduces to a random effect TVCM when μi is uncor- 

related with x ij . For identification purpose, we impose the restric- 

tion for the fixed effect model that 
∑ m 

i =1 μi = 0 . The usual way to 

incorporate unobservable variables in a statistical model is via ran- 

dom effects. 

For longitudinal data we are going to propose the kernel-based 

random effect T VCM (KRET VCM) by applying the basic principle 

of least squares support vector machine (LS-SVM) to the random 

effect TVCM after preprocessing the time variable t ij by a nonlin- 

ear feature mapping function into some feature space. LS-SVM is 

a least squares version of support vector machine (SVM) and was 

initially introduced by [24] . The SVM, first developed by [26] and 

his group at AT&T Bell Laboratories, has been successfully applied 

to a number of real world problems related to classification and 

regression problems. LS-SVM has been proved to be a very appeal- 

ing and promising method [24,25] . There are some strong points 

of LS-SVM. Here we will consider four of them. The first is that 

LS-SVM can theoretically achieve a global optimum solution like- 

wise SVM. Thus, it obtains the unique solution. The second is that 

LS-SVM uses the linear equation which is simple to solve and good 

for computational time saving. The third is that LS-SVM has good 

generalization performance likewise SVM. Thus, LS-SVM generally 

has excellent performance on unseen test data. The fourth is that 

LS-SVM makes it possible to derive the generalized cross validation 

(GCV) function which can be utilized efficiently for the model se- 

lection. Thus, it is meaningful to compare the proposed KRETVCM 

with some existing models in terms of fitting and generalization 

performances. 

For the purpose of developing the KRETVCM, we consider 

the random effect TVCM (1) with x i j = (1 , x i j1 , . . . , x i jp ) 
t and 

β(t i j ) = (β0 (t i j ) , β1 (t i j ) , . . . , βp ( t ij )) 
t . This means that we basi- 

cally consider the TVCM with the intercept term depending on 

time as in [10] . The rest of this paper is organized as follows. 

Section 2 briefly describes the basic principle of LS-SVM and 

proposes the KRETVCM along with its model selection proce- 

dure.Section 3 and Section 4 present numerical studies and con- 

clusion, respectively. 

2. KRETVCM for longitudinal data 

In this section we review LS-SVM regression and illustrate 

KRETVCM with estimation and model selection procedures. The 

underlying idea of KRETVCM is that the true mean specification is 

approximated by a combination of linear LS-SVM regression and 

the random effect TVCM based on the time variable t ij prepro- 

cessed by a nonlinear feature mapping function. 

2.1. LS-SVM regression 

The foundations of LS-SVM have been originally proposed by 

[24] . We now briefly review the standard LS-SVM regression. We 

basically illustrate the case of the linear LS-SVM regression. Given 

the training data set D = { (x i , y i ) } n i =1 
with covariate vector x i ∈ R 

p 

and the response y i ∈ R , the optimization problem of the linear LS- 

SVM regression in primal weight space is given as follows: 

min 

w,b,εi 

J = 

1 

2 

w 

t w + 

λ

2 

n ∑ 

i =1 

ε2 
i (3) 

over ( w , b , ε i ) subject to equality constraints 

y i = w 

t x i + b + εi , i = 1 , . . . , n (4) 

with weight vector w ∈ R p in primal weight space, bias term b and 

error variables ε i ∈ R . The regularization parameter λ is a positive 

real constant and is considered as a tuning parameter in the algo- 

rithm. 

The key idea is to construct the primal Lagrange function 

L = J −
n ∑ 

i =1 

αi 

(
w 

t x i + b + εi − y i 
)
, (5) 

where αi ≥ 0 are Lagrange multipliers. The conditions for optimal- 

ity are given by 

∂L 

∂w 

= 0 → w = 

n ∑ 

i =1 

αi x i 

∂L 

∂b 
= 0 → 

n ∑ 

i =1 

αi = 0 (6) 

∂L 

∂αi 

= 0 → w 

t x i + b + εi − y i = 0 , i = 1 , . . . , n 

∂L 

∂εi 

= 0 → αi = λεi , i = 1 , . . . , n. 

After eliminating ε i and w , we have the optimal values of αi 

and b which are obtained from the linear equation as follows: (
0 1 

t 
n 

1 n �λ−1 I n 

)(
b 
α

)
= 

(
0 

y 

)
, (7) 

where y = (y 1 , . . . , y n ) 
t , α = (α1 , . . . , αn ) 

t , 1 n is the vector of ones 

of dimension n , I n is the identity matrix of dimension n and � is 

the n × n matrix with elements x t 
i 
x j , i, j = 1 , . . . , n . 

Then, the regression function given x is estimated as follows: 

ˆ f (x ) = 

n ∑ 

i =1 

ˆ αi x 
t 
i x + ̂

 b , (8) 

where ˆ αi and 

ˆ b are the solutions of the linear Eq. (7) . 

We now consider how to make the linear LS-SVM regression 

algorithm nonlinear. This could be achieved by simply preprocess- 

ing the input vectors x i by a nonlinear feature mapping function 

φ : R 

p → F into some feature space F , and then applying the lin- 

ear LS-SVM regression algorithm. Thus, we only need to use the 

kernel trick K(x i , x j ) = φ(x i ) 
t φ(x j ) in the Eqs. (7) and (8) associ- 

ated with the linear LS-SVM regression algorithm [16] . We never 

need to know explicitly what φ is. The most popular kernel is 

Gaussian kernel defined by 

K(x i , x j ) = exp 

(
−‖ x i − x j ‖ 

2 / 2 κ
)
, i, j = 1 , . . . , n, (9) 

where κ > 0 is the kernel parameter. 

2.2. Estimation procedure of KRETVCM 

Given the training data set D = { (t i j , x i j , z i j , y i j ) } m,n i 
i, j=1 

, we first 

consider a random effect TVCM of the form 

y i j = f (t i j , x i j , z i j ) + εi j 

= β(t i j ) 
t x i j + γ t 

i z i j + εi j , i = 1 , 2 , . . . , m, j = 1 , 2 , . . . , n i , (10) 

where x i j = (1 , x i j1 , . . . , x i jp ) 
t , β(t i j ) = 

(β0 (t i j ) , β1 (t i j ) , . . . , βp (t i j )) 
t , y ij ∈ R is the j th response vari- 

able of the i th subject corresponding to (p + 1) × 1 fixed effect 

covariate vector x ij and q × 1 random effect covariate vector z ij , 

with the q × 1 random effect parameter vector γi ∼ N q (0 , �) 

and n i × 1 error vector εi = (εi 1 , . . . , εin i 
) t ∼ N n i (0 , R i ) , and γ i 

is independent of ε ij . Here p and q are the numbers of fixed 
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