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a b s t r a c t 

Using neural networks to handle intractability problems and solve complex computation equations is 

becoming common practices in academia and industry. It has been shown that, although complicated, 

these problems can be formulated as a set of equations and the key is to find the zeros of them. Ze- 

roing neural networks (ZNN), as a class of neural networks particularly dedicated to find zeros of equa- 

tions, have played an indispensable role in the online solution of time-varying problem in the past years 

and many fruitful research outcomes have been reported in the literatures. The aim of this paper is to 

provide a comprehensive survey of the research on ZNNs, including continuous-time and discrete-time 

ZNN models for various problems solving as well as their applications in motion planning and control of 

redundant manipulators, tracking control of chaotic systems, or even populations control in mathemati- 

cal biosciences. By considering the fact that real-time performance is highly demanded for time-varying 

problems in practice, stability and convergence analyses of different continuous-time ZNN models are re- 

viewed in detail in a unified way. For the case of discrete-time problems solving, the procedures on how 

to discretize a continuous-time ZNN model and the techniques on how to obtain an accuracy solution are 

summarized. Concluding remarks and future directions of ZNN are pointed out and discussed. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Approaches based on neural network for solving various knotty 

problems have attracted considerable attention in many fields 

[1–14] . For example, an adaptive fuzzy controller based on neural 

network is constructed for a class of nonlinear discrete-time sys- 

tems with discrete-time dead zone in [1] . An adaptive decentral- 

ized scheme based on neural network is presented for multiple- 

input and multiple-output (MIMO) nonlinear systems with the aid 

of back-stepping techniques in [14] . Such a scheme guarantees the 

uniform ultimate boundedness of all signals in the closed-loop sys- 

tem with respect to mean square. To overcome the design diffi- 
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culty of nonstrict-feedback structure, Ref. [3] uses variable separa- 

tion technique to decompose the unknown functions of all state 

variables into a sum of smooth functions of each error dynamic. 

With the aid of radial basis function neural networks’ universal 

approximation capability, an adaptive neural control algorithm is 

proposed in [3] . Authors in [8] propose a neural network model 

to generate winner-take-all competition, which has an explicit ex- 

planation of the competition mechanism. As a branch of artifi- 

cial intelligence, recurrent neural network (RNN) models have re- 

ceived considerable investigation in many scientific and engineer- 

ing fields, which is often exploited for computational problems 

[15–22] and nonlinear optimizations are solved by many meth- 

ods [23,24] A gradient-based RNN model is presented in [25] for 

computing the inversion of a matrix online with guaranteed con- 

vergence, which can be deemed as a seminal work in this field. 

A simplified neural network model is presented in [26] to solve 

a class of linear matrix inequality problems, of which the sta- 

bility and solvability are analyzed theoretically. In general, recur- 

rent neural networks can be divided into two classes: (1) the 

continuous-time RNNs and (2) the discrete-time RNNs. By exploit- 

ing a numerical differential formula, a continuous-time RNN model 

can be discretized into a discrete-time one. However, a numer- 

ical differentiation rule does not necessarily generate a conver- 
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gent and stable discrete-time RNN model even though the origi- 

nal continuous-time RNN model is convergent. In addition, if the 

discrete-time RNN model is coded as a serial-processing program 

and performed on the digital computer, it can be considered as a 

numerical algorithm [27] . As a novel type of RNN specifically de- 

signed for solving time-varying problems, zeroing neural network 

(ZNN) is able to perfectly track time-varying solution by exploit- 

ing the time derivative of time-varying parameters. Then, many re- 

searchers make progresses along this direction by proposing vari- 

ous kinds of ZNN models for solving problems with different high- 

lights. A detailed survey and summary are necessary for under- 

standing the development of ZNN models as well as their appli- 

cations. This paper is organized as follows. In Section 2 , the de- 

scriptions and continuous-time ZNN models are presented, which 

include the evolution of models, activation functions, finite-time 

convergence, and integration-enhanced ZNN models. In Section 3 , 

a brief review on the discrete-time ZNN models is presented. In 

Section 4 , the applications of ZNN techniques are also analyzed. 

Section 5 concludes this paper with finial remarks. 

2. Design formulas and various continuous-time models 

Prior to the proposal of ZNN approach, many gradient-related 

methods had been reported on the solutions of algebraic equa- 

tions and optimizations, i.e., zero-finding problems [28–31] . By 

constructing a performance index whose minimal point is identical 

to the solution to the task problem, a typical approach is to design 

a recurrent neural network evolving along the negative gradient 

descent to achieve a minimum of the performance index. However, 

these methods may fail to work well when exploited to the on- 

line solution of dynamic problems with time-varying coefficients, 

which is intrinsically due to the lacking of the compensation to the 

velocity components of the time-varying coefficients. Therefore, in 

view of the variability of coefficients, any method designed intrin- 

sically for computing the static problem can no longer guarantee 

the decrease of the performance index of a time-varying problem, 

thereby possibly leading to a failure of the task with large resid- 

ual error. For example, it is observed, investigated and analyzed in 

[32–34] that the residual error of gradient-based neural network 

(GNN) for solving a time-varying problem can not be eliminated 

and remains at a relative high level. Refs. [27,35,36] further point 

out that, when exploited to solve a time-varying problem, any tra- 

ditional method that does not exploit the time-derivative informa- 

tion of time-varying coefficients can not converge to the theoretic 

solution with the residual error proportional to the value of the 

sampling gap. 

To solve a time-varying problem in an error-free manner, Zhang 

et al. present a recurrent neural network for solving the time- 

varying Sylvester equation, which is depicted in an implicit dynam- 

ical system and can be deemed as the seminal work on ZNN [37] . 

They further generalize and summarize the design procedures of 

such a methodology, and analyze the convergence and stability of 

the corresponding ZNN model for time-varying matrix inversion in 

[38] . Specifically, for solving a time-varying matrix inversion prob- 

lem depicted in the form of 

A (t) X (t) = I, (1) 

where A (t) ∈ R 

(n ×n ) is a smooth matrix with its derivative as- 

sumed to be known, I ∈ R 

(n ×n ) is the identity matrix, X(t) ∈ R 

(n ×n ) 

is the unknown matrix to be obtained. 

The core in the design of ZNN model is to construct an error 

function E(t) = A (t ) X(t ) − I, which is evidently different from the 

performance index of gradient-related methods. Then, the ZNN de- 

sign formula is used to enforce the corresponding E ( t ) to converge 

to zero: 

˙ E (t) = −γ�(E(t)) , (2) 

Table 1 

Continuous-time ZNN models constructed for solving time-varying problems. 

Dynamic problem Error function ZNN model 

[41] 4th root finding e (t) = x 4 (t) ˙ x (t) = 

˙ a (t) −γφ(x 4 (t) −a (t)) 
4 x 3 (t) 

x 4 (t) = a (t) −a (t) 

[44] Linear system e (t) = A (t ) x (t ) A (t) ̇ x (t) = − ˙ A (t) x (t) 

A (t) x (t) = b (t) −b (t) + ̇

 b (t) − γ�(A (t ) x (t ) − b (t)) 

[38] Matrix inversion E(t) = A (t ) X(t ) A (t) ̇ X (t) = − ˙ A (t) X(t) 

A (t) X(t) = I −I −γ�(A (t) X(t) − I) 

[45] Matrix square E(t) = X(t) ̇ X (t) + 

˙ X (t) X(t) = 

roots finding X 2 (t) − A (t) −γ�(X 2 (t) − A (t)) − ˙ A (t) 

X 2 (t) = A (t) 

[46] Nonlinear e (t) = 

˙ x (t) = −J −1 (x (t ) , t ) 

equations f ( x ( t ), t ) 
(
γ�(f (x (t ) , t )) + 

∂f (x (t ) ,t ) 
∂t 

)
f (x (t ) , t ) = 0 

where γ > 0 and �( ·) is a matrix array of activation function 

φ( ·). Similarly, for the vector-valued time-varying problems [39] , 

e.g., the system of linear equation A (t) x (t) = b (t) , with A (t) ∈ 

R 

(m ×n ) , x (t) ∈ R 

n , and b (t) ∈ R 

m , the error function can be de- 

signed as e (t) = A (t) x (t) − b (t) . Even for the scalar-valued time- 

varying problems [40–43] , e.g., the time-varying 4th root finding 

problem x 4 (t) = a (t ) , with a (t ) ∈ R and x (t) ∈ R , the error func- 

tion can be designed as e (t) = x 4 (t) − a (t) . Note that the matrix- 

valued (or vector-valued) error function is a decoupled system and 

thus its ij th (or i th) subsystem, i.e., the scale-valued dynamical 

system ˙ e (t) = −γφ(e (t)) , can be used to analyze the correspond- 

ing convergence and stability. By exploiting ZNN design formula 

to solve different time-varying problems, various ZNN models that 

exploit the time-derivative information of coefficients can be con- 

structed with their formulations shown in Table 1 . In short, any 

ZNN model for solving any time-varying problem can be deemed 

as an equivalently expansion of the ZNN design formula. 

Since Zhang et al. proposed ZNN models in the 20 0 0s, modified 

models have been frequently proposed by considering different 

internal and external factors. Especially, when nonlinear activation 

functions are incorporated into the network models, stability 

research has gained significant progress. A brief review on the 

design of continuous-time ZNN models for various problems 

solving is presented in [47] . However, with the rapid development 

of the theory on ZNN, new variations have taken place [48] and 

in the ensuing part, we will briefly review some basic models of 

ZNN from different perspective. 

2.1. Convergence and stability 

In the research of neural networks, the key issues are con- 

vergence and stability. Broadly speaking, there are three ways 

for proving the convergence of ZNN models, i.e., proof based on 

Lyapunov theory, ordinary differential equation (ODE), or Laplace 

transform. 

(1) Proof based on Lyapunov theory [49] . For example, for the 

time-varying nonlinear minimization problem solving with 

the task function being f (x (t ) , t ) ∈ R and x (t) ∈ R 

n in [36] , 

the error function can be designed as 

e (t) = 

∂ f (x (t) , t) 

∂x (t) 
. 

By constructing a Lyapunov function candidate: 

V (t) = 

1 

2 

e T (t) e (t) , 

it can be concluded that V ( t ) is evidently of the positive- 

definiteness. Then, computing its time derivative leads to 

˙ V (t) = −γ e T (t ) e (t ) , 
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