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a b s t r a c t 

Many real-world applications are characterized by multiple conflicting objectives. In such problems op- 

timality is replaced by Pareto optimality and the goal is to find the Pareto frontier, a set of solutions 

representing different compromises among the objectives. Despite recent advances in multi-objective op- 

timization, achieving an accurate representation of the Pareto frontier is still an important challenge. 

Building on recent advances in reinforcement learning and multi-objective policy search, we present two 

novel manifold-based algorithms to solve multi-objective Markov decision processes. These algorithms 

combine episodic exploration strategies and importance sampling to efficiently learn a manifold in the 

policy parameter space such that its image in the objective space accurately approximates the Pareto 

frontier. We show that episode-based approaches and importance sampling can lead to significantly bet- 

ter results in the context of multi-objective reinforcement learning. Evaluated on three multi-objective 

problems, our algorithms outperform state-of-the-art methods both in terms of quality of the learned 

Pareto frontier and sample efficiency. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Many real-world problems are characterized by the presence of 

multiple conflicting objectives, such as economic systems [1] , med- 

ical treatment [2] , control of robots [3,4] , water reservoirs [5] and 

elevators [6] . These applications can be modeled as multi-objective 

reinforcement learning (MORL) problems, where the standard no- 

tion of optimality is replaced by Pareto optimality , a concept for 

representing compromises among the objectives. Despite the in- 

creasing interest in multi-objective problems and recent advances 

in reinforcement learning, MORL is still a relatively young field of 

research. 

MORL approaches can be classified in two main cate- 

gories [7] based on the number of policies they learn: single pol- 

icy and multiple policy. While the majority of MORL approaches 

belong to the former category, in this paper we focus on the lat- 

ter and aim to learn a set of policies representing the best com- 

promises among the objectives, namely the Pareto frontier . Provid- 

ing an accurate and uniform representation of the complete Pareto 

frontier is often beneficial. It encapsulates all the trade-offs among 
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the objectives and gives better insight into the problem, thus help- 

ing the a posteriori selection of the most favorable solution. 

Following the same line of thoughts of RL, initially MORL re- 

searchers have focused on the development of value function- 

based approaches, where the attention was posed on the recov- 

ery of the optimal value function (for more details, we refer to 

the survey in [8] ). Recently 1 , policy search approaches have also 

been extended to multi-objective problems [9,10] . However, the 

majority of MORL approaches perform exploration in the action 

space [11] . This strategy, commonly known as step-based , requires 

a different exploration noise at each time step and many stud- 

ies [12,13] have shown that it is subject to several limitations, 

primarily due to the high variance in the policy update. Further- 

more, common algorithms involve the solution of several (indepen- 

dent) single-objective problems in order to approximate the Pareto 

frontier [9,14–16] . This approach implies an inefficient use of the 

samples, as each optimization is usually carried out on-policy, and 

most of MORL state-of-the-art approaches are inapplicable to large 

problems, especially in the presence of several objectives. 

In this paper, we address these limitations and present the first 

manifold-based episodic algorithms in MORL literature. First, these 

algorithms follow an episodic exploration strategy (also known as 

parameter-based or black-box ) in order to reduce the variance dur- 

1 The first seminal work dates back to 2001 [1] . 
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Fig. 1. Transformation map from the high-level distribution ϱ to approximate fron- 

tiers in the objective space F . A high-level parameter vector ω i maps to a manifold 

in the policy parameter space �. Subsequently, the manifold maps to an approxi- 

mate frontier F i , with each vector θ[ j ] mapping to a return vector J ( θ[ j ] ). 

ing the policy update. Second, they perform a manifold-based pol- 

icy search and directly learn a manifold in the policy parameter 

space to generate infinitely many Pareto-optimal solutions in a sin- 

gle run. By employing Pareto-optimal indicator functions, the al- 

gorithms are guaranteed to accurately and uniformly approximate 

the Pareto frontier. Finally, we show how to incorporate importance 

sampling in order to further reduce the sample complexity and to 

extend these algorithms to the off-policy paradigm. To the best of 

our knowledge, our algorithms are the first ones to tackle all these 

issues at once. 

The remainder of the paper is organized as follows. In Section 2 , 

we introduce the multi-objective problem and discuss related work 

in MORL literature. Section 3 includes the main contributions of 

this paper: an episodic manifold-based reformulation of the multi- 

objective problem, two policy search algorithms and two Pareto- 

optimal indicatorfunctions to solve it, and an extension to impor- 

tance sampling for reusing past samples. Section 4 provides a thor- 

ough empirical evaluation of the proposed algorithms on three 

problems, namely a water reservoir control task, a linear-quadratic 

Gaussian regulator and a simulated robot tetherball game. Finally, 

in Section 5 we discuss the results of this study and propose pos- 

sible avenues of investigation for future research. 

2. Preliminaries 

In this section, we provide the mathematical framework and 

the terminology as used in this paper. Moreover, we present a cat- 

egorization of the multi-objective approaches presented in MORL 

literature and we briefly discuss their advantages and drawbacks. 

2.1. Problem statement and notation 

Multi-objective Markov decision processes (MOMDPs) are an 

extension of MDPs in which several pairs of reward functions and 

discount factors are defined, one for each objective. Formally, a 

MOMDP is described by a tuple 〈S, A , P, R , γ , D〉 : S ⊆ R 

d s is a 

continuous state space, A ⊆ R 

d a is a continuous action space, P is 

a Markovian transition model and P(s ′ | s, a ) defines the transition 

density between state s and s ′ under action a , R = 

[
R 1 , . . . , R d r 

]T 

and γ = 

[
γ1 , . . . , γd r 

]T 
are vectors of reward functions R i : S ×

A → R and discount factors γ i ∈ [0, 1), respectively, and D is the 

initial state distribution. 

The policy followed by the agent is described by a conditional 

distribution π ( a | s ) specifying the probability of taking action a 

in state s . In MOMDPs, a policy π is associated to d r expected 

returns J π = 

[
J π
1 

, . . . , J π
d r 

]
∈ F , where F ⊆ R 

d r is the policy per- 

formance space. Using the trajectory-based definition, the i th ex- 

pected return is 

J πi = E τ∼p(·| π) [ R i ( τ) ] , 

where τ = { s t , a t } H τt=1 
∈ T is a trajectory (episode) of length H τ

(possibly infinite) drawn from the distribution p ( τ| π ), with return 

R i ( τ) = 

∑ H τ
t=1 

γ t−1 
i 

R i (s t , a t ) . Since it is not common to have multi- 

ple discount factors (the problem becomes NP-complete [17] ), we 

consider a unique value γ for all the objectives. 

Unlike in single-objective MDPs, in MOMDPs a single policy 

dominating all others usually does not exist. When conflicting ob- 

jectives are considered, no policy can simultaneously maximize all 

of them. For this reason, in multi-objective optimization a different 

dominance concept based on Pareto optimality is used. A policy π
strongly dominates a policy π ′ (denoted by π
π ′ ) if it outperforms 

π ′ on all objectives, i.e., 

π 
 π ′ ⇐⇒ ∀ i ∈ { 1 , . . . , d r } , J πi > J π
′ 

i . 

Similarly, policy π weakly dominates policy π ′ (which is denoted 

by π � π ′ ) if it is not worse on all objectives, i.e., 

∀ i ∈ { 1 , . . . , d r } , J πi ≥ J π
′ 

i ∧ ∃ i ∈ { 1 , . . . , d r } , J πi = J π
′ 

i . 

If there is no policy π ′ such that π ′ 
π , then the policy π is Pareto- 

optimal . We can also speak of locally Pareto-optimal policies, for 

which the definition is the same as above, except that we restrict 

the dominance to a neighborhood of π . 

Our goal is to determine the set of all Pareto-optimal policies 

�∗ = 

{
π | � π ′ , π ′ 
 π

}
, which maps to the so-called Pareto fron- 

tier F = 

{
J π

∗ | π ∗ ∈ �∗}. 2 More specifically, in this paper we con- 

sider parametric policies π ∈ �θ ≡ { πθ | θ ∈ � ⊆ R 

d θ } , where � is 

the policy parameters space . For simplicity, we will use θ in place 

of π θ to denote the dependence on the current policy, e.g., J ( θ) in- 

stead of J πθ . 

2.2. Related work 

MORL approaches can be divided into two categories based on 

the number of policies they learn [7] . Single-policy methods aim 

to find the best policy satisfying a preference among the objec- 

tives. The majority of MORL approaches belong to this category 

and differ for the way in which preferences are expressed. They 

are easy to implement, but require a priori decision about the 

type of the solution and suffer from instability, as small changes 

on the preferences may result in significant variation in the solu- 

tion [7] . The most straightforward and common single-policy ap- 

proach is the scalarization where a function is applied to the re- 

ward vector in order to produce a scalar signal. Usually, a linear 

combination (weighted sum) of the rewards is performed and the 

weights are used to express the preferences over multiple objec- 

tive [16,19,20] . Less common is the use of non linear mapping [21] . 

Although scalarization approaches are simple and intuitive, they 

may fail in obtaining MOO desiderata, e.g.,a uniform distribution 

of the weights may not produce accurate and evenly distributed 

points on the Pareto frontier [22] . On the other hand, several is- 

sues of the scalarization are alleviated in RL due to the fact that 

the Pareto frontier is convex when stochastic policies are consid- 

ered [8,23] . For example, the convex hull of stochastic policies, 

each one being optimal w.r.t.a different linear scalarization, rep- 

resents a viable approximation of the Pareto frontier 3 . Different 

single-policy approaches are based on thresholds and lexicographic 

ordering [14] or different kinds of preferences over the objective 

space [24,25] . 

Multiple-policy approaches, on the contrary, aim at learning 

multiple policies in order to approximate the Pareto frontier. Build- 

2 As done in [18] , we suppose that locally Pareto-optimal solutions that are not 

Pareto-optimal do not exist. 
3 In episodic tasks, we can even exploit deterministic optimal policies by con- 

structing mixture policies, i.e., policies stochastically choosing between determinis- 

tic policies at the beginning of each episode. 
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