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Abstract

For reinforcement learning tasks with multiple objectives, it may be advan-
tageous to learn stochastic or non-stationary policies. This paper investi-
gates two novel algorithms for learning non-stationary policies which produce
Pareto-optimal behaviour (w-steering and Q-steering), by extending prior
work based on the concept of geometric steering. Empirical results demon-
strate that both new algorithms offer substantial performance improvements
over stationary deterministic policies, while Q-steering significantly outper-
forms w-steering when the agent has no information about recurrent states
within the environment. It is further demonstrated that Q-steering can be
used interactively by providing a human decision-maker with a visualisation
of the Pareto front and allowing them to adjust the agent’s target point dur-
ing learning. To demonstrate broader applicability, the use of Q-steering in
combination with function approximation is also illustrated on a task involv-
ing control of local battery storage for a residential solar power system.
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1. Introduction1

Reinforcement learning (RL) methods learn the optimal behaviour for2

an agent on the basis of a reward signal received from the agent’s environ-3

ment. While most RL research assumes the agent has only a single objective4
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