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a b s t r a c t 

Computational prediction of drug–target interactions is an essential task with various applications in the 

pharmaceutical industry, such as adverse effect prediction or drug repositioning. Recently, expert systems 

based on machine learning have been applied to drug–target interaction prediction. Although hubness- 

aware machine learning techniques are among the most promising approaches, their potential to enhance 

drug–target interaction prediction methods has not been exploited yet. In this paper, we extend the Bipar- 

tite Local Model (BLM), one of the most prominent interaction prediction methods. In particular, we use 

BLM with a hubness-aware regression technique, EC k NN. We represent drugs and targets in the similarity 

space with rich set of features (i.e., chemical, genomic and interaction features), and build a projection- 

based ensemble of BLMs. In order to assist reproducibility of our work as well as comparison to published 

results, we perform experiments on widely used publicly available drug–target interaction datasets. The 

results show that our approach outperforms state-of-the-art drug–target prediction techniques. Addition- 

ally, we demonstrate the feasibility of predictions from the point of view of applications. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Due to the large number of drug compounds and pharmacologi- 

cal targets, many of the interactions between these entities are un- 

known. More complete knowledge about drug–target interactions 

will not only contribute to better understanding the pharmacology 

of drugs, but it is also relevant for the prediction of adverse effects 

and drug repositioning, i.e., use of an existing medicine to treat a 

disease that has not been treated with that drug yet. The relevance 

of the later application is also underlined by the fact that only a 

few dozens of new drugs are approved by FDA each year. More- 

over, the average costs related to discovery of a new drug are ap- 

proximately $1.8 billion, and the process takes more than 10 years 

[18] . 

In addition, the incomplete knowledge about the interactions 

between drugs and pharmaceutical targets in case of drugs affect- 

ing the central nervous system (CNS) further emphasizes the need 
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for computational prediction approaches: while CNS plays an es- 

sential role, the costs associated with disorders affecting CNS are 

enormous: solely in Europe, the total annual costs associated with 

brain disorders is estimated to be approximately 800 billion EUR 

[25] . 

The biochemical validation of hypothesized drug–target inter- 

actions is laborious, time-consuming and expensive [31,49] . There- 

fore, computational methods have been proposed for the predic- 

tion of drug–target interactions [5,22,23,34] . Traditional techniques 

include approaches based on molecular docking [10,15,29] , ligand 

chemistry [21] , [26] and text mining [53] . 

A serious limitation of docking-based approaches is that they 

require information about the three-dimensional structure of can- 

didate drugs and targets which is often not available, especially for 

G-protein coupled receptors (GPCRs) and Ion Channels. Addition- 

ally, the performance of ligand-based approaches decrease in case 

if only few ligands are known. 

In response to the above limitations of classic approaches, ex- 

pert systems based on machine learning techniques have been 

proposed for the prediction of drug–target interactions [14,50,51] . 

Recent approaches are based on matrix factorization [12,14,52] , 

restricted Boltzmann machines [48] , network-based inference 

[9,11,35,43] , positive-unlabeled learning [22] and the integration of 

http://dx.doi.org/10.1016/j.neucom.2017.04.055 
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Fig. 1. The degree distribution in the Enzyme drug–target network. The horizontal axis corresponds to the number of interactions, whereas the vertical axis corresponds to 

the number of drugs (left) or targets (right). For example, the first column in the left diagram shows that 177 drugs interact with only one (but not necessarily the same) 

target. In contrast, some drugs (and targets, resp.) participate in surprisingly many interactions, e.g., there are 16 drugs, each of which interacts with 19 targets. 

multiple sources of information [33,42] . See also [32,37] for excel- 

lent surveys. 

One of the most prominent drug–target interaction prediction 

techniques is based on Bipartite Local Models (BLMs) [4] in case 

of which the drug–target interaction prediction task is treated as a 

link prediction problem in bipartite graphs. Recent works aiming to 

extend BLMs focused on semi-supervised prediction [50] , improved 

kernels [47] and the incorporation of neighbor-based interaction- 

profile inferring [24] . 

However, none of the aforementioned prediction techniques 

took the presence of hubs into account. With hubs, we mean en- 

tities that are connected to surprisingly many other entities of a 

network. This phenomenon has been observed for various biolog- 

ical, chemical and medical networks, see e.g. [1,17] . Similar obser- 

vations can be made for drug–target networks as well, e.g., Fig. 1 

shows the degree distribution for the drugs and targets in the En- 

zyme drug–target interaction network (we will describe the data in 

Section 2.1 ). As one can see, the distributions have long tails, i.e., 

there are drugs (and targets, resp.) that are connected with sur- 

prisingly many targets (drugs, resp.) compared to “average” drugs 

(targets, respectively). 

The presence of hubs has been observed in nearest neighbor 

graphs, see e.g. [8,28,46] , and hubness-aware classifiers have been 

developed, see [45] for a survey. More recently, hubness-aware re- 

gression techniques, including k -nearest neighbor with error cor- 

rection (EC k NN), were developed that allow for predictions on a 

continuous scale [7] . Despite the fact that hubness-aware tech- 

niques are among the most promising recent machine learning ap- 

proaches, their potential to enhance drug–target interaction pre- 

diction methods has not been exploited yet: to the best of our 

knowledge, our initial work [6] is the only one aiming to apply 

hubness-aware models to the drug–target prediction problem. 

In this study, we extend Bipartite Local Models and our previ- 

ous work [6] . We use EC k NN as local model of BLM and propose 

an enhanced representation of drugs and targets in a multi-modal 

similarity space (i.e., a representation which incorporates multiple 

similarity measures). Furthermore, we build a projection-based en- 

semble and study how the performance depends on the number of 

base models of the ensemble. As we use hubness-aware local mod- 

els in the proposed approach, we refer to it as HLM for simplicity. 

In order to assist reproducibility of our work as well as comparison 

to published results, we perform experiments on publicly available 

real-world drug–target interaction datasets. The results show that 

our approach outperforms other state-of-the-art drug–target pre- 

diction techniques. 

The rest of this paper is organized as follows: in Section 2 we 

review the background necessary to understand our work. In par- 

ticular, we focus on BLM and EC k NN. Section 3 presents the 

proposed approach, followed by its experimental evaluation in 

Section 4 . Finally, conclusions are drawn in Section 5 . 

Table 1 

Number of drugs, targets and interactions in the datasets used in our study. 

Dataset # Drugs # Targets # Interactions 

Enzyme 445 664 2926 

Ion Channels 210 204 1476 

G-protein coupled receptors (GPCR) 223 95 635 

Nuclear Receptors (NR) 54 26 90 

Kinase [36] 68 442 1527 

2. Materials and methods 

In order to ensure that the paper is self-contained, we begin 

this section by describing the datasets used in our study and the 

procedure to obtain drug–drug and target–target similarities. Sub- 

sequently, the BLM approach for drug–target interaction prediction 

is reviewed. This is followed by the description of hubness-aware 

error correction for nearest neighbor regression. 

2.1. Drug–target interaction data 

In our study we used five publicly available drug–target interac- 

tion datasets from two repositories, 1 namely Enzyme, Ion Channel, 

G-protein coupled receptors (GPCR), Nuclear Receptors (NR), and 

Kinase [36] . These datasets have been used in various studies, see 

e.g. [4,14,39,50,51] . 

Each of the first four datasets contains a binary interaction 

matrix between drugs and targets, in which each entry indicates 

whether the interaction between the corresponding drug and tar- 

get is known or not. In contrast, Kinase contains continuous values 

of binding affinity for all drug–target pairs of the data. In order 

to produce a binary interaction matrix, we used the same cutoff

threshold as Pahikkala et al. [39] . Table 1 shows the number of 

drugs, targets and interactions in the datasets. 

In general, drug–drug and target–target similarities may be 

computed in many ways. Next, we describe the similarities used 

in our study. In case of the Enzyme, Ion Channel, GPCR and NR 

datasets, chemical structure similarities were computed using the 

SIMCOMP [16] graph-alignment algorithm, in order to obtain drug–

drug similarities. For Kinase, we used 2D Tanimoto coefficients as 

drug–drug similarities. 

In order to compute the similarity between target proteins of 

the Enzyme, Ion Channel, GPCR and NR datasets, their amino acid 

sequences were retrieved from the KEGG GENES [20] database so 

that similarities between pharmacological targets were determined 

by sequence alignment methods, such as the Smith–Waterman al- 

gorithm. We refer to [51] for more details. For Kinase, we used the 

normalized Smith-Waterman scores as target–target similarities. 

1 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/ http://staff.cs.utu.fi/ 
∼aatapa/data/DrugTarget/ 

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://staff.cs.utu.fi/~aatapa/data/DrugTarget/
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