
Neurocomputing 259 (2017) 112–118 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Selecting label-dependent features for multi-label classification 

Lishan Qiao 

∗, Limei Zhang , Zhonggui Sun , Xueyan Liu 

School of Mathematics, Liaocheng University, Liaocheng 2520 0 0, China 

a r t i c l e i n f o 

Article history: 

Received 19 January 2016 

Revised 27 May 2016 

Accepted 3 August 2016 

Available online 7 February 2017 

Keywords: 

Multi-label classification 

Feature selection 

Label dependency 

Nesterov’s method 

a b s t r a c t 

An instance is often represented from different aspects (views or modalities), which leads to high- 

dimensional features and even multiple labels. In this paper, we focus on the feature selection problem 

in multi-label classification, for which a trivial solution is handling the labels dividedly. Obviously, such 

a scheme may not work well by leaving the label relationship out of consideration. Recently, several re- 

search works conduct feature selection directly under a multi-label framework by implicitly or explicitly 

modeling label relationship. However, these works assume that all labels share the same feature subset 

or subspace, which is not reasonable enough for some scenarios since different labels tend to convey 

different semantics. To address this problem, we develop a novel approach in this paper to select label- 

dependent features for multi-label classification. Specifically, we (1) formulate a convex model based on a 

more general and practical assumption that different labels convey different semantics with specific fea- 

tures; (2) design an alternating optimization algorithm based on Nesterov’s method and L 1 -ball projection 

for efficiently finding the optimal solution, which can realize multi-label classification, feature selection, 

and label relationship estimation simultaneously. Finally, experiments on publicly available datasets show 

that the proposed algorithm achieves better performance than several related methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In many real problems, data are often collected from multiple 

modalities, represented by multiple views, or analyzed for multi- 

ple tasks. Consequently, an instance is generally associated with 

high-dimensional features and even more than one label, especially 

when the data have semantic ambiguity. For example, a natural 

scene can be described by many kinds of features (e.g., color and 

texture) and with several labels such as sky, cloud , and tree . There- 

fore, how to select suitable features for multi-label classification is 

an increasingly important topic, due to its great value in practice. 

A simple strategy for multi-label feature selection is handling 

the labels one by one. That is, one first decomposes the multi-label 

problem into several single-label problems, and then selects fea- 

tures for each sub-problem based on traditional feature selection 

methods. However, such a scheme is obviously not optimal, since 

it fails to model the relationship among different labels [ 1 , 2 ]. For 

example, a scene image would be labeled as sky with high possi- 

bility if it has been labeled with cloud . 

Recently, researchers proposed to select features directly un- 

der a multi-label classification framework. To our best knowl- 

edge, there are two representative methods following this line. One 

is Ji et al.’s multi-label formulation based on the least squares 
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(ML LS ) [3] which implicitly considers the label relationship by 

assuming that all labels share a common feature subspace, and 

the other is Gu et al.’s correlated multi-label feature selection 

(CMLFS) [4] which explicitly models the label relationship for fea- 

ture selection based on label rank SVM. 

A main issue involved in the above two methods is their as- 

sumption that all labels share the same features without distin- 

guishing their differences. In practice, however, different labels 

usually have different semantics, and thus tend to be supported 

by specific features. This is important for both interpretability and 

discrimination of the selected features. Therefore, in this paper, 

we develop a new method to s elect l abel-d e pendent f eatures for 

m ulti- l abel classification (SLEF ML ) with label relationship learning 

simultaneously in a unified framework. In particular, the proposed 

method has the following characteristics: 

(1) Novel assumption. Different from the existing multi-label 

feature selection methods that select the same features for 

all labels, the proposed method assumes different labels be- 

ing supported by specific features. As a result, each label 

will have its personalized features, and meanwhile differ- 

ent labels might automatically share some common features, 

which provide a natural way to exploit label relationship 

(see Section 3.2 for more details). 

(2) A unified model for classification, feature selection and label 

relationship learning. Based on the proposed framework, 

we implement three tasks (i.e., multi-label classification, 
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label-dependent feature selection, and label relationship 

learning) simultaneously in a single model. Many typical 

feature selection methods in single-label field, such as 

LASSO and elastic net [5] , can be considered as special cases 

of the proposed multi-label learning framework. 

(3) Convex formulation and efficient learning algorithm. The 

proposed model is convex, and thus has a global optimal so- 

lution. We design an efficient alternating optimization algo- 

rithm by extending Nesterov’s method with L 1 -ball projec- 

tion developed in [6] to a multi-label version for obtaining 

the optimal solution. 

Finally, we conduct experiments including two illustrative ex- 

amples and multi-label classification on several data sets used 

in related works [ 3 , 4 ]. Despite its simplicity, the proposed algo- 

rithm achieves competitive performances compared with the re- 

lated methods. 

The rest of the paper is organized as follows. In Section 2 , 

we introduce several related works. In Section 3 , we present our 

method including motivation, formulation, algorithm, and some in- 

teresting insights. In Section 4 , we conduct experiments for val- 

idating the proposed method, and in Section 5 we conclude the 

paper. 

2. Related works 

In this paper, we focus on feature selection for multi-label clas- 

sification. As pointed out previously, the simplest way is decom- 

posing the multi-label problem into a set of single-label ones, and 

then employ existing feature selection strategies (including filter, 

wrapper and embedding) for each sub-problem [ 7 , 8 ]. For instance, 

the often-used decomposition is the so-called 1-vs-all scheme, or 

binary relevance [9] . Refer to recent survey [10] for more informa- 

tion about this topic. 

However, the divide-and-conquer strategy above cannot effec- 

tively encode the label relationship into the feature selection 

model. Recently, Zhang [11] proposed a LIFT algorithm to construct 

new features for each label by clustering analysis, but it empha- 

sizes feature reconstruction instead of feature selection. In addi- 

tion, it does not consider label relationship yet. As a result, re- 

searchers attempt to conduct feature selection and exploit label 

dependency simultaneously in a multi-label classification frame- 

work. In the subsections below, we briefly review two represen- 

tative methods following this line. 

2.1. Multi-label formulation based on least squares 

Multi-label formulation based on least squares loss (ML LS ) 

learns a common feature subspace for all labels in a least squares 

classification framework. With a series of mathematical formula- 

tion, ML LS can be rewritten as the following optimization prob- 

lem: 

min 

W, �
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‖ 
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where X = [ x 1 , . . . · · · , x n ] 
T ∈ R n ×d is a data matrix with n and d de- 

noting sample size and dimension, respectively; Y ∈ R n × l is the 

label matrix whose entry y i j = 1 if the i th sample has the j th la- 

bel, and −1 otherwise; W = [ w 1 , . . . · · · , w l ] 
T ∈ R d×l is the model 

parameter matrix with w j , j = 1 , . . . , l, corresponding to the lin- 

ear classifier for the j th label; � ∈ R r × d ( r < d ) spans the com- 

mon feature subspace shared by all labels. As a result, ML LS in 

fact exploits the label relationship implicitly since different labels 

share the same features. The optimal solution of Eq. (1) can be ob- 

tained by solving a generalized eigenvalue problem, though it is 

not jointly convex w.r.t. W and � [3] . 

2.2. Correlated multi-label feature selection 

Similar to ML LS , correlated multi-label feature selection (CMLFS) 

handles feature selection and label relationship in a regularized 

multi-label classification framework as follows. 
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where y i is the label set for the i th sample, and ȳ i is the com- 

plementary set of y i . ξ ijk is the slack variable used in label rank 

SVM [4] . � is a positive definite matrix for modeling the label re- 

lationship. From Eq. (2) we note that the main differences between 

CMLFS and ML LS include: (1) CMLFS employs more complex loss 

(i.e., label ranking loss corresponding to the first term of the ob- 

jective function); (2) CMLFS encodes label correlation in the third 

term of the objective function explicitly by imposing a matrix- 

variate Normal (MVN) prior [12] on the weight matrix W . In fact, 

MVN prior has been used in multi-task learning for modeling the 

relationship among different tasks [13] . Shortly, we will show that 

it is a special case of the prior used in our model, and we for- 

mulate the prior based on a different motivation. Furthermore, we 

note that the feature indicator parameter p in Eq. (2) is common 

for all labels, and thus CMLFS also select the same features for all 

labels like ML LS . 

3. The proposed method 

In this section, we dwell on the proposed method, including its 

motivation (assumption), model, and algorithm. 

3.1. Motivation and assumption 

As discussed above, ML LS and CMLFS are two representative 

methods for treating feature selection and label correlation in 

a single framework. Despite their encouraging performances on 

some public data sets, both methods suffer from a common is- 

sue that they assume different labels share the same features. In 

fact, such an assumption partially stems from multi-task learning 

[14] where the feature sharing scheme aims at transferring knowl- 

edge among different data sources. In our view, the feature shar- 

ing strategy successes in multi-task scenario mainly owes to the 

fact such a scheme increases the training sample size by pooling 

the samples with common features together, and then may help 

improve the generalization. 

However, multi-label problem has some differences from multi- 

task learning, and the assumption above does not necessarily work 

well. We summarize several possible reasons as follows. 

(1) Multiple labels are based on a single data source, and thus 

the training samples do not increase, even though using the 

same feature-sharing scheme as in multi-task learning. 

(2) Different labels tend to have different semantics that are 

more likely to be supported by different features. In 

Section 4.1 , we provide an example based on face images for 

illustrating this point. 

(3) Of course, there are some common features among different 

labels, but the sharing mechanism may be exceedingly com- 

plex. For example, label 1 shares some features with label 

2, while label 2 shares another group of features with la- 

bel 3. A recent work [15] assumes that “highly-related out- 

puts may share a common set of relevant features, whereas 

weakly related outputs are less likely to be affected by the 
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