
Applied Soft Computing 46 (2016) 1067–1078

Contents lists available at ScienceDirect

Applied  Soft  Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Multi-objective  optimization  for  parameter  selection  and
characterization  of  optical  flow  methods

Jose  Delpianoa,∗,  Luis  Pizarrob,  Rodrigo  Verschaec,1, Javier  Ruiz-del-Solarc,d

a School of Engineering and Applied Sciences, Universidad de los Andes, Santiago, Chile
b Department of Computer Science, University College London, London, UK
c Advanced Mining Technology Center, Santiago, Chile
d Department of Electrical Engineering, Universidad de Chile, Santiago, Chile

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 16 June 2015
Received in revised form 20 January 2016
Accepted 22 January 2016
Available online 15 February 2016

Keywords:
Multi-objective optimization
Optical flow
Parameter selection

a  b  s  t  r  a  c  t

Optical  flow  methods  are among  the most  accurate  techniques  for estimating  displacement  and  velocity
fields  in  a number  of  applications  that range  from  neuroscience  to robotics.  The  performance  of any  optical
flow  method  will  naturally  depend  on the  configuration  of  its  parameters,  and  for  different  applications
there  are different  trade-offs  between  the  corresponding  evaluation  criteria  (e.g.  the  accuracy  and  the
processing  speed  of  the  estimated  optical  flow).  Beyond  the standard  practice  of  manual  selection  of
parameters  for a specific  application,  in  this  article  we propose  a  framework  for  automatic  parameter
setting  that  allows  searching  for an approximated  Pareto-optimal  set  of configurations  in  the  whole
parameter  space.  This  final  Pareto-front  characterizes  each  specific  method,  enabling  proper  method
comparison  and  proper  parameter  selection.  Using  the  proposed  methodology  and  two  open  benchmark
databases,  we  study  two  recent  variational  optical  flow  methods.  The  obtained  results  clearly  indicate  that
the method  to  be selected  is application  dependent,  that in general  method  comparison  and  parameter
selection  should  not  be done  using  a  single  evaluation  measure,  and  that  the  proposed  approach  allows
to  successfully  perform  the desired  method  comparison  and  parameter  selection.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Following the seminal works of Lucas and Kanade [1] and Horn and Schunck [2]
on local and global optical flow estimation, respectively, numerous variants of these
and  other sophisticated approaches have been proposed to solve the ill-posed prob-
lem of motion recovery. Optical flow benchmarks such as Middlebury [3], KITTI [4]
and MPI-Sintel [5] list most modern methods and evaluate them on image sequences
with known motion under varying conditions. The importance of benchmarking to
evaluate and rank the different optical flow approaches is relevant as low-level
motion cues are the cornerstone of many high-level machine vision and pattern
recognition systems [6,7], where applications may  impose certain constraints on
the accuracy of the estimated motion and/or the speed at which such estimations
can  be obtained.

The parameter space has a direct influence on the performance of optical flow
methods. Searching for an accurate and/or fast estimation often leads to different
parameter settings of the same method. The literature on optimization of the hyper-
parameters mainly focuses on accuracy, while speed is improved with multigrid
solvers and GPU implementations [8–11]. Some works employ statistical methods
to  learn the parameter space. For example, simultaneous perturbation stochastic
approximation can be used for learning model parameters from training data [12],
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and Bayesian inference for estimating the regularization parameter [13] and other
model parameters [14]. Some works have also compared the execution times of
several approaches [15,16,8,17]. Nevertheless, most articles do not consider the
problem of parameter estimation in a multi-objective sense as there is little research
regarding the method’s accuracy and speed simultaneously as figures of merit for
model selection. A recent example is [18], where the authors compare several meta-
heuristics in the Middlebury and Sintel databases, but only taking a single objective
(the  accuracy) into account.

In this article, we  argue that a parameter setting that compromises between
both criteria, accuracy and speed, might be the right operating point for a given
application. In fact, such a compromise has been observed in certain species in the
animal kingdom, which exhibit a behavioral trade-off between accuracy and speed
in  completing specific tasks [19]. By using (vector-valued) multi-objective optimiza-
tion we  can explore the whole parameter space to find an operating curve describing
the  optimal parameter set that best describes the accuracy-speed compromise for a
specific optical flow approach. Moreover, the operating curves of different methods
can be juxtaposed in order to select the most suitable method at specific operating
points given the joint objective of minimizing the alignment error and the execution
time. The proposed framework is tested considering two objectives, though it can
deal with multiple objectives without any modification.

To set some notation, let us define a two-objective operating point of an optical
flow method parameterized by � as v(�) = (AEE(�), T(�))� ∈ R

2, described in terms
of  its average end-point error AAE and execution time T. It is clear that the perfor-
mance is a function of the model parameters �. Naturally, we can only compute the
AEE  if we know the ground truth motion. Therefore, we work with benchmark data
sets to train our approach. Nevertheless, we later discuss how to use our framework
in  scenarios where no ground truth is available. Given a parameter configuration �i

http://dx.doi.org/10.1016/j.asoc.2016.01.037
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.01.037
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.01.037&domain=pdf
mailto:jd@miuandes.cl
mailto:l.pizarro@ucl.ac.uk
mailto:rodrigo@verschae.org
mailto:jruizd@ing.uchile.cl
dx.doi.org/10.1016/j.asoc.2016.01.037


1068 J. Delpiano et al. / Applied Soft Computing 46 (2016) 1067–1078

and its corresponding solution v(�i) in the objective space, the aim of multi-objective
optimization is to find a set of points {v(�j)}j that have a better value for at least one
of the objectives and equal or better values for the remaining objectives. This results
in  a set of solutions that corresponds to an approximation of the Pareto-optimal front
[20] for the tested optical flow method. This front contains much richer information
than a local or global optimum obtained by single-objective optimization. The Pareto
front can be considered as a receiver operating characteristic (ROC) curve that char-
acterizes the optimized method by its most distinctive parameter settings (operating
conditions) in one curve. Having the Pareto fronts for various methods in the same
axes permits a quantitative comparison of them that is inherently multi-objective
and  therefore suited to a problem with possibly conflicting objectives.

Searching for the optimal parameter setting represents a challenging problem,
especially when dealing with multi-objective optimization [21,22] and when there
is  no analytical form for the multi-objective function being optimized. The most
common approaches in this case are random search, grid search, weighted sum of
the objectives, and evolutionary algorithms. We use evolutionary algorithms [23].
In  particular, we employ genetic algorithms [24] for this task. Genetic algorithms
can  solve problems with multiple solutions. They do not require objective function
derivatives, thus they are easy to implement and can cope with non-continuous
problems. Standard genetic algorithms search the parameter space in an evolutive
manner, considering only one objective. To optimize several objectives concurrently
we  utilize an evolutionary multi-objective optimization (EMO) strategy [20]. Among
the  many existing alternatives [25], we use NSGA-II (an improved Non-dominated
Sorting Genetic Algorithm) [20,26], a successful approach for EMO that has a fast
approach for non-dominated solution sorting and a smart criterion for diversity
preservation. Two particular reasons for using this method in the present work are
that it is well understood and that open source implementations exist (we use the
implementation made available by the authors). Other nature-inspired derivative-
free optimization algorithms include the usage of fuzzy logic to combine solutions
of  particle swarm optimization and genetic algorithms for a single objective [27],
techniques inspired in gravitational forces for single-objective optimization [28],
and  a hybrid approach based on NSGA-II and neural networks for the optimization
of  time-intensive simulations [29]. Multi-objective optimization has been applied
before to other computer vision tasks, such as segmentation [30], face detection
[31], tracking [32] and 3D vision [33]. To the best of our knowledge, there is very
limited research related to multi-objective optimization of optical flow methods.
One exception is the work of Salmen et al. [34], where the authors look for highly
accurate and efficient optical flow algorithms. However, they work with non-dense
optical flow methods and define efficiency as the number of flow vectors found per
frame. Thus, they are not considering algorithm speed.

The main contributions of our work are as follows:

• We  propose a methodology for parameter selection and characterization of opti-
cal  flow methods based on multi-objective optimization considering the joint
accuracy-speed compromise.

• Our multi-objective optimization strategy can be applied to tune the parameters
of  any optical flow method optimally (variational or not). In general, the parameter
space of an optical flow method can be very large, which makes the optimization
task very challenging.

• We  use the proposed method to analyze two methods, namely the large displace-
ment optical flow method of Brox and Malik [35] and the anisotropic Huber-L1

optical flow approach of Werlberger et al. [36], in two recent databases (Middle-
bury and KITTI).

The current article is an extended version of [37], with the main differences being:

• In  [37], we test multi-objective optimization of optical flow in a classical method,
namely combined local global (CLG). For our new article, we  describe two  recent
optical flow methods, the large displacement optical flow by Brox and Malik [35]
and the Huber-L1 optical flow by Werlberger et al. [36], in a common mathe-
matical framework. We use those two methods as a proof-of-concept for our
methodology, as it can cope with any optical flow method, variational or not.
For  the experiments in [37], we worked with our own implementation of the CLG
method. Now, we constrained ourselves to using only optical flow implementa-
tions made available by their authors in order to have fair characterization and
comparison of the optical flow methods.

• In  [37], we chose to use the Middlebury data set. In the present article, we test our
methodology with the classical Middlebury data set, but also in the current and
more challenging KITTI data set. This time we  added an analysis of distribution
of displacements. This kind of analysis is needed to understand the differences in
performance between the two selected optical flow methods.

• The aim of our previous article [37] was the characterization of optical flow meth-
ods, but did not consider the optimal selection of parameters for them. In [37],
our experimental results end up characterizing three variants of a classical optical
flow method, the CLG optical flow by Bruhn et al. [38]. However, we  did not study
the optimum parameters related to the solutions in those final Pareto fronts. In
this  article, we analyzed the parameter settings of the non-dominated solutions,
particularly their variation range along the Pareto front.

• The comparison among optical flow methods is just suggested in our conference
paper [37]. In our present manuscript, we characterize optical flow methods and
make use of that characterization to compare two optical flow methods when
applied to two relevant data sets.

In the recent related work of Pereira et al. [18], several meta-heuristics were
taken into account when evaluating the large displacement optical flow [35] in the
Middlebury and Sintel databases, but with the main differences with our work being
that [18] only deals with single-objective optimization, that we work with the more
recent and challenging KITTI dataset, that in addition to large displacement opti-
cal  flow we  consider the anisotropic Huber-L1 optical flow, and that we perform a
quantitative analysis of the obtained optimal parameters for each analyzed method.

1.1. Organization of the paper

Section 2 describes the two advanced optical flow methods that were chosen
as sample methods to evaluate multi-objective optimization. Section 3 presents a
novel evolutionary multi-objective methodology for parameter selection and char-
acterization of optical flow methods. Section 4 analyzes the optimization results,
comparing both methods by their accuracy-speed operating curves. It also stud-
ies  the resulting parameter settings. Section 5 concludes the paper suggesting the
development of multi-objective rankings in modern benchmarks of optical flow
methods.

2. Advanced optical flow methods

We  briefly discuss the parameter space of two recent variational
methods for optical flow estimation, the Large Displacement Optical
Flow (LDOF) approach of Brox and Malik [35] and the Anisotropic
Huber-L1 Optical Flow (AHL1) approach of Werlberger et al. [36]. As
mentioned above, these methods are chosen as proof-of-concept
since the proposed multi-objective optimization framework pre-
sented in Section 3 will work similarly for any other method,
variational or not.

Using a common notation to describe both methods, let I1, I2 :
� ⊂ R

2 → R  be two consecutive grayscale images defined on the
rectangular grid �. The optical flow field aligning both frames is
a function u : � → R

2. That is, u(x) = (u1(x), u2(x))�, ∀x = (x1, x2)�

∈ �.

2.1. Large displacement optical flow

Traditional variational methods for optical flow computation fail
to estimate the motion of small scale structures moving fast. The
LDOF approach overcomes this problem by incorporating point cor-
respondences from descriptor matching into the variational setting
[35]. The optical flow field u is obtained as the minimizer of the
energy functional

ELDOF(u) = Eint(u) + �Egrad(u) + ˛Ereg(u) + ˇEmatch(u, uc)

+Edesc(uc) . (1)

The first three terms in (1) originate in the classic variational optical
flow formulation [39] which penalize model deviations from gray
value constancy, gradient constancy, and regularization (smooth-
ness) of the solution, respectively,

Eint(u) =
∫

�

�(|I2(x + u(x)) − I1(x)|2) dx , (2)

Egrad(u) =
∫

�

�(|∇I2(x + u(x)) − ∇I1(x)|2) dx, (3)

Ereg(u) =
∫

�

�(|∇u1(x)|2 + |∇u2(x)|2) dx. (4)

The regularized L1 norm (also called TV) �(s2) =
√

s2 + �2 is used
to penalize model deviations. The authors set � = 0.001 to avoid
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