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a b s t r a c t 

The success of support vector machine depends on the kernel function, which directly affects the per- 

formance of SVM. Therefore, to improve the generalization of SVM, we will study the selection of kernel 

function. The multi-scale kernel method is one particular type of multiple kernel method which combines 

multi-scale kernels through a multi-kernel learning framework. It has the capability of generalizing not 

only the scattered region of a training set very well but also generalizing the dense region of data sets 

very well. Inspired by the advantages of the multi-scale kernel learning method, we applied kernel cen- 

tered polarization to construct an optimization problem which was used to learn the multi scale kernel 

function and select the optimal parameters. A thorough analysis and proofs are provided. Experimental 

results show that the proposed kernel learning method and algorithm are reasonable and effective and 

have very good generalization performance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The kernel method [1,2,6] is a learning method based on ker- 

nel functions; it is widely used in various fields of machine learn- 

ing. Support vector machines (SVMs) are the most successful ap- 

plication of kernel methods. The kernel function can easily extend 

a linear SVM to nonlinear, because the kernel function of com- 

plex inner product computation of high-dimensional space is con- 

verted into low dimensional input space kernel function computa- 

tion, eliminating the need to design feature space [3] , and cleverly 

solving calculations in high dimensional space of problems such 

as “dimension disaster”. Cortes and Vapnik [4] proposed the SVM 

method, and because of its inherent advantages, the SVM has be- 

come a hot spot in the machine learning field since that time. The 

kernel method maps the input space to the feature space. Most 

of the time, it leads to good generalization effects. But if the se- 

lected kernel function is improper, the generalization performance 

will not be as good. So, the success of kernel methods depends on 

the selection of kernels. 

In general, the methods of cross validation or “leaving one out”

are used to choose kernel functions. The algorithms of the two 

methods are simple, but their complexity is high, and they require 

a large amount of calculation. For the purpose of overcoming the 

disadvantages of these approaches, many methods have been pro- 
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posed to minimize the upper boundary of errors. The RM (radius 

margin) [5] boundary is one of the most common error boundaries. 

For the sake of further improving calculation efficiency, many ker- 

nel measurement methods select a proper kernel function by mea- 

suring the distribution of samples in feature space. For example, 

Cristianini [7] proposed the kernel target alignment (KTA) for the 

first time. This method can be used to measure the quality of a 

kernel matrix. Additionally, it is easy to implement the algorithm 

with low complexity, and is widely used in the selection of ker- 

nel function. Subsequently, Baram [8] proposed kernel polarization 

which can be regarded as non-normalized kernel alignment; how- 

ever, the method described above is single kernel learning method. 

In addition, each kernel function has a different characteristic, so 

in different scenarios, there is a large difference in performance 

of the kernel function. To ameliorate the above problems, multi- 

kernel learning methods [10 –16] appeared. Although multi-kernel 

methods have been successfully applied, they are only generating 

a new kernel function according to the Mercer condition and us- 

ing the linear combination of simple single-kernel functions. There 

is no perfect theory for the selection of kernel functions. These 

methods cannot solve the problem of the uneven distribution of 

samples, limiting the expression ability of the decision function. In 

this case, the multi-scale multiple kernel learning has arisen. For 

example Kingsbury [17] used several multi scale kernels to classify 

step by step. This method has the capability to seek out a suitable 

kernel scale for the input space for each local area. This kind of 

method is flexible and practical. 
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For multi-scale kernel learning, it is critical to determine the 

multi-scale kernel coefficients. There are many ways to determine 

the coefficients of the kernel function. Some use the idea of av- 

eraging the effect of the kernel [17,31 –33] , so that different ker- 

nel functions have the same effect on the decision function. In ad- 

dition, some use intelligent optimization methods [31] to obtain 

the objective function of the parameter values. However, the large 

numbers of iterative steps in this kind of optimization method 

greatly increase the learning time for SVMs. These methods have 

different kernel synthesis coefficients, but they are still empirical 

methods. With the increase of the number of kernel functions, 

the dimension of the optimization problem will increase greatly. 

However, kernel polarization makes use of the information from 

the complete training set and can be computed efficiently. Further- 

more, it is independent of the actual learning machine used. We 

applied kernel polarization to construct an optimal problem which 

was used to learn the multi scale kernel function and select the 

optimal parameters. A thorough analysis and proofs are provided. 

In summary, the contributions of this paper are: 

(1) A multi-scale kernel learning method is proposed. 

(2) It is proven that this method can determine the optimal multi- 

scale kernel function with low algorithm complexity. 

(3) Comprehensive experiments were conducted to empirically an- 

alyze our method and the algorithm on six image databases. 

The experimental results demonstrate that our algorithm out- 

performs other methods including SVM, TSVM [34] , LapSVM 

[35] , and k-nearest neighbor. 

The following sections will be organized as follows: Section 

2 introduce kernel evaluation measures and multi-scale kernel 

learning methods. We give a detailed description and analysis of 

multi-scale multiple kernel learning in Section 3 .The detailed de- 

scription of the proposed method and algorithm are presented in 

Section 4 . Section 5 presents the experimental results. The paper 

concludes in Section 6 . 

2. Related works 

2.1. Kernel evaluation measures 

The model selection problem involves selecting the kernel and 

optimization. The kernel evaluation measure is a model selection 

method. It [18–22] is a good measure of model selection, which 

utilizes the distribution of the samples, and is an efficient method. 

In addition, it is independent of any particular learning method. 

Cristianini [7] first proposed kernel target alignment (KTA). It has 

been widely used in kernel function selection. Baram put forward 

kernel polarization [8] , which can be seen as non-normalized KTA; 

P ( K, Y ) = 〈 K, Y 〉 F = 

n ∑ 

i =1 

n ∑ 

j=1 

y i y j k 
(
x i , x j 

)
, (1) 

K is the kernel matrix, K = k ( x i , x j ) , y = ( y 1 , . . . , y n ) 
T , 〈 K, yy T 〉 F is 

the Frobenius inner product of K and yy T , Y = y y T is the target ma- 

trix; the kernel polarization criterion represents the similarity of 

the kernel matrix K and the target matrix. The greater the kernel 

polarization criterion value is achieved, the better the kernel func- 

tion will be. So, when selecting a kernel function, it will be better 

to choose a kernel that allows reaching the highest kernel polar- 

ization criterion value. 

2.2. Multiple kernel learning 

Multiple kernels learning [12–16] is a flexible learning based 

on the kernel function. This kind of method is better than single 

kernel learning. The simplest and the most commonly used multi- 

ple kernel learning method is to linearly combine the basic kernel 

functions together, which can be described as follows: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

K = 

m ∑ 

i =1 

αi K i 

m ∑ 

i =1 

αi = 1 

αi ≥ 0 , 

K i represents the basic kernel, m stands for the sum of the ba- 

sic kernels, αi represents the weighted coefficient of K i . Multi- 

ple kernel learning can be converted into selecting the basic ker- 

nel function and selecting the appropriate weight coefficient. The 

feature space of the samples is a combination of several feature 

spaces. Due to the use of a combination of various basic ker- 

nel feature mapping capabilities, it solves the problem of select- 

ing the kernel function and related variables very well. Multiple 

kernel learning greatly improves the recognition rate and general- 

ization ability. The most important issue is how to learn to ob- 

tain the weights. To solve this problem, more effective multiple 

kernel learning theories and methods have been proposed in re- 

cent years. In the early stage, the multiple kernel was learned by 

boosting methods [39] , semi-definite programming [12] , quadrati- 

cally constrained quadratic program [13] , semi-infinite linear pro- 

gram [14,25] , and by Hyper kernels [11] . Subsequently, Simple MKL 

[28,29] was proposed. By combining the multiple kernel learning 

and SVM method, multiple kernel learning has been applied in 

many fields. 

2.3. Multi-scale kernel learning 

The multi-scale kernel learning method is one kind of special- 

ized kernel method. This method fuses several different scale ker- 

nels together, and is very flexible and effective. This method is 

currently performing well in application. For example, Kingsbury 

[17] used two different scale kernels to perform step by step clas- 

sification. Zheng [30] and Yang [31] proposed multi-scale support 

vector regression which was used to estimate functions and fore- 

cast the time series. In addition, multi-scale kernel and SVMs can 

be combined together and applied to image compression [32] , hot 

spot detection and modeling [33] and measuring time-series simi- 

larity [38] .Our paper uses polarization as the objective function to 

construct an optimal problem which can be used to learn the pro- 

posed multi-scale kernel. Our algorithm is simple and effective. 

3. Multi-scale multiple kernel method 

The multi-scale kernel learning method is one kind of special- 

ized kernel method which is flexible and effective. This method 

fuses kernels together. A series of multi-scale kernel functions 

should be found as the base kernel in the first step. Then the 

multi-scale multiple kernel function should be constructed on this 

foundation. A Gaussian kernel can be described as follows: 

k ( x, z ) = exp 

(
−‖ 

x − z ‖ 

2 

2 σ 2 

)
. (3) 

A Gaussian kernel is one kind of multi-scale kernel function 

which is capable of universal expression. We will use it in our pa- 

per and each function will be assigned a different bandwidth. 

exp 

(
−‖ 

x − z ‖ 

2 

2 σ1 
2 

)
, . . . , exp 

(
−‖ 

x − z ‖ 

2 

2 σm 

2 

)
, (4) 

σ 1 < ��� < σ m 

. For the Gaussian kernel, the higher bandwidth 

we use, the flatter the function will be. Based on this property, 

we know that the functions with low bandwidths will be a better 
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