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The intravascular ultrasound-based tissue characterization of coronary plaque is important for the
early diagnosis of acute coronary syndromes. The conventional tissue characterization techniques how-
ever cannot obtain sufficient identification accuracy for various tissue properties, because the feature
employed for characterization are static features, which lack dynamical information about backscattered
radio-frequency (RF) signals.

In this work, we propose a new intravascular ultrasound-based tissue characterization method that
uses a modular network self-organizing map (mnSOM) in which each module is composed of an autore-
gressive model for representing the dynamics of the RF signals.

The proposed method can create a map of various dynamical features from the RF signal. This map
enables generalized tissue characterizations. The proposed method is verified by comparing its tissue
characterization performance with that of the conventional method using real intravascular ultrasound
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1. Introduction

Acute coronary syndromes (ACS) are caused by the rupture
of vulnerable atherosclerotic plaques [1]. Friedrich et al. reported
that the risk of plaque rupture depends on the histological pat-
tern, i.e., the histological composition related to the stability of the
atherosclerotic plaques [2]. Thus, it isimportant to identify whether
the histological compositions have an unstable pattern (vulnerable
atheroma) before the plaque ruptures. Therefore, tissue character-
ization of atherosclerotic plaques is an important requirement in
clinical practice.

One method of examining the histological composition within
the vessel wall is to use backscattered intravascular ultrasound
(IVUS) [3,4]. IVUS provides a tomographic visualization of the coro-
nary artery and a real-time in vivo image of the plaque. For these
reasons, the IVUS method has been employed for the analysis of
ACS [5-8].

In previous studies, several analysis techniques have been pro-
posed for conventional tissue characterization using IVUS. One such
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method is integrated backscatter (IB) analysis [9,10]. In IB analy-
sis, tissues are classified according to their IB value, which is the
locally averaged power of backscattered ultrasound. IB analysis is
effective in a limited number of cases. The IB values do not, how-
ever, always represent the characterization of the tissues, because
IB values are substantially affected by the intensity of the backscat-
tered ultrasound. The intensity of the ultrasound depends on the
distance between the plaque and the probe, meaning it is difficult
to classify plaque tissues using only the IB values.

To address this problem, spectral analysis methods have been
proposed that use a backscattered IVUS radio-frequency (RF) sig-
nal in the frequency domain. In studies by Moore et al. and Nair
et al. [11,12], pixels in the IVUS image were classified according
to a feature vector formed from the Fourier spectrum of the local
RF signal. Additionally, a k-nearest neighbor (kNN) method has
been employed to classify the tissues [13,14]. In those works, a
prototype vector represents the Fourier spectrum of the local RF
signal. It has been reported that kNN can classify tissues flexibly
and robustly without any pre-processing of the training feature
vectors. However, kNN cannot perform a satisfactory classification
if the distribution of the feature vectors overlap. A large degree of
overlap among the feature vectors occurs in the feature space, as
the composition of the tissues has infinite variety. Therefore, the
generalization performance decreases. In addition, static feature
vectors, which lack dynamical information about the RF signal, are
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Fig. 1. B-mode image of a blood vessel cross-section.

used to identify the tissue types. The addition of dynamic infor-
mation to the tissue characterization should serve to improve the
identification accuracy, as the ultrasonic echo in tissues changes
dynamically according to various factors.

In this paper, to realize the precise tissue characterization of
coronary plaques, we propose a new method using a modular net-
work self-organizing map (mnSOM) [15] in which each module is
composed of an autoregressive (AR) model. We call the proposed
method “AR-mnSOM.”

The mnSOM is a modular network in which every reference vec-
tor unit of Kohonen'’s self-organizing map (SOM) [16] is replaced
by a trainable functional module such as a neural network. More-
over, a competitive and cooperative algorithm of the SOM has been
introduced to the learning algorithm of the modular network. The
mnSOM is able to perform higher-order information processing. For
example, Minatohara et al. have proposed an adaptive controller
that uses an mnSOM in which each module is composed of a lin-
ear dynamic prediction model and a controller model [17]. In this
method, the stability of both learning and control is better than that
in the adaptive controllers of conventional modular networks.

In this work, we employ an AR model for the mnSOM module.
The AR model, which is a linear prediction model, can represent
simple dynamical models. Moreover, the neighboring AR modules
in the mnSOM map apply competitive and cooperative learning
to represent similar dynamics. For this mechanism, AR-mnSOM
creates a map of a simple dynamical model. In addition, the inter-
polation functions produced by the cooperative algorithm give the
AR-mnSOM strong generalization ability. The map given by the
AR-mnSOM can then be used to make highly generalized tissue
characterizations.

In this paper, the proposed method is applied to the tissue char-
acterization problem using real IVUS data, and its performance is
verified quantitatively and qualitatively. The validity and practical
effectiveness of the proposed method for tissue characterization
are confirmed by the experimental results.

2. Intravascular ultrasound

IVUS is used for tissue characterization in the vessel wall. In
particular, the ultrasound signal (commonly referred to as the RF
signal) is obtained from a probe mounted on a catheter that is
inserted into a coronary artery. The strength of the RF signal differs
according to depth or tissue characterization.

The RF signals are obtained at all circumferences of the intravas-
cular region, as the ultrasound is transmitted and received while
rotating the probe. The strength of the RF signal at all circumfer-
ences is displayed as a B-mode image, as shown in Fig. 1. That

is, Fig. 1 represents the blood vessel cross-section. Moreover, the
probe is moved backward in the blood vessel while it is rotated.
Thus, the sets of RF signals in each vascular cross-section are
obtained at intervals of, e.g., 5 um.

3. AR-mnSOM

An AR-mnSOM is an mnSOM in which a unit module is com-
posed of an AR model (see Fig. 2).

The mnSOM, proposed by Tokunaga and Furukawa [15], has a
network architecture in which each unit module is composed of
a neural network, and those networks are arranged in a lattice.
In other words, each vector unit in Kohonen’s SOM is replaced
by a neural network module. A learning algorithm including
competitive and cooperative mechanisms is introduced to the
modular network. The mnSOM, thus, creates a map of functions
(input-output models), as the neighborhood modules represent
similar functions (input-output models). Moreover, the compo-
sition of the unit modules can be changed according to the task
[18-22]. These features have led to mnSOMs being applied to high-
dimensional pattern classification and recognition in time-series
data [23,24].

In the proposed AR-mnSOM, the unit module of the mnSOM
consists of an AR model, which is a typical prediction method for
time-series data (Fig. 2). The AR model is a linear dynamical model
that predicts the future values of time-series data. Consequently,
the AR-mnSOM generates a map of the prediction models based on
the similarity of their dynamics. Here, it is also possible to employ
an autoregressive moving average (ARMA) model, a recurrent neu-
ral network (RNN) or a radial basis function (RBF), instead of the AR
model. The AR model, however, is used to mnSOMs module in this
work. The mainreason for using the AR model is that the AR model is
suitable for the theory and the algorithms of the mnSOM compared
with other models. Moreover, reliability and effectivity of using the
AR model has been verified in previous work [17]. Besides, it is dif-
ficult to analyze the map of the mnSOM composed of the neural
networks that represent the non-linear dynamics. For problems in
the case of learning the non-linear dynamics using multiple mod-
ules are discussed in reference [25]. We need to analyze the inner
representation of each module and the contexture of the whole
map because one aims of the present work is to verify the effec-
tiveness of dynamical features in the tissue characterization of the
IVUS. Therefore, we employ the AR-mnSOM in which the theory,
the algorithm and way of analysis have been established.

In this study, short time signals (called episodes in this paper)
are separated from the RF signals, and applied to the AR-mnSOM
as input (see Fig. 3). The model parameters in each AR module
are updated using the method of steepest descent, incorporating
the competitive and cooperative mechanisms of the mnSOM. As
a result, each AR module in the mnSOM represents a different
dynamical model. After the learning process, it is possible to form a
classification based on the tissue characterization given by the AR-
mnSOM, because the dynamical properties of the RF signal depend
on the tissue characterization.

3.1. Theory of AR model
In the AR model, signal x(t) at time t is defined as follows:
M
X(t)=> wx(t—i)+ot, (1)
i=1

where w;(i=1,...,M) is an autoregression coefficient, M is an
order, and o is a white noise. Eq. (1) gives a prediction of x(t) from
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