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a b s t r a c t 

Human tracking and prediction are pervasive nowadays. It is possible to integrate multi-source human 

tracking data and location based social media data, which includes spatial data, temporal data, and tex- 

tual data, to make human-mobility prediction and over-crowded station detection, and then to plan con- 

venient bus/subway routes for passengers. This study is useful in many real applications, including con- 

venient travel route recommendation and location based services in general. We face two challenges in 

this study: (1) how to use multi-source human tracking data to model probabilistic transfer cost between 

different bus/subway lines practically, and (2) how to compute convenient bus/subway routes efficiently. 

To overcome these challenges, we define a set of probabilistic spatial metrics and propose a travel-time 

threshold and a transfer-cost threshold convenient route planning queries. A series of optimization tech- 

niques are developed to enhance the query efficiency. We also conduct extensive experiments to verify 

the performance of the proposed algorithms. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

With the rapid development of GPS-enabled mobile devices, 

intelligent transportation systems, and online mapping services, 

human-mobility tracking and prediction are pervasive [35–37] . As 

an example, in many large cities like Hong Kong, the number of 

commuters is usually very huge at peak hours (e.g., millions of 

commuters travel around 7:00am ∼ 8:30am). In a public trans- 

portation network, once a subway station is over-crowded, the 

transfer cost of commuters may increase. In this work, we inte- 

grate multi-source human tracking data and location based social 

media data, such as spatial data (locations), temporal data (time 

stamps), and textual data (geo-tagged tweets and geo-tagged mi- 

croblogs) according to the approaches introduced in [33,34] , to 

make human-mobility prediction and over-crowded station de- 

tection. Then, we define a set of probabilistic spatial metrics to 

describe transfer cost between two different bus/subway lines, 

and then we try to compute the convenient bus/subway routes 

(transfer-cost threshold query) efficiently in such public trans- 
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portation networks. This type of query is useful in many real ap- 

plications, including convenient travel route recommendation and 

location based services in general. 

We give an example in Fig. 1 , where exist 3 subway lines (blue, 

green, and red lines) and 9 stations p 1 , p 2 , ..., and p 9 . Assume p 1 
and p 4 are a source station and a destination station for a pas- 

senger, and r 1 = 〈 p 1 , p 2 , p 3 , p 5 , p 4 〉 is a travel route. A passenger 

may take the blue line and at p 4 he may transfer to the red line. 

The local travel time of r 1 is 20 min, excluding transfer cost. At 

peak hours, p 5 has 35% over-crowded probability, and its trans- 

fer cost is p 5 .tc = 1 + 30 × 35% = 11 . 5 min (if a station is over- 

crowded, it may be closed for 30 min, and the transfer time at nor- 

mal time is 1 minute). Thus, the global travel time of r 1 is 31.5 min. 

Route r 2 = 〈 p 1 , p 2 , p 6 , p 5 , p 4 〉 is an alternative travel route from 

p 1 to p 4 , and it has p 2 and p 6 two transfer stations. The local 

travel time of route r 2 is 30 min, excluding transfer cost. At peak 

house, p 2 has 5% over-crowded probability, and its transfer cost is 

p 2 .tc = 1 + 30 × 5% = 2 . 5 min. Thus, the global travel time of r 2 is 

32.5 min. For a travel-time threshold routing query, if the travel- 

time threshold τ.t = 35 in., r 2 is returned because it has a lower 

transfer cost (compared to r 1 ) and its travel time does not exceeds 

the travel-time threshold τ .t . For a transfer-cost threshold routing 

query, if the transfer-cost threshold τ.tc = 12 min, r 1 is returned 

because it has a lower travel time and its transfer cost does not 

exceeds the transfer-cost threshold. 
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Fig. 1. An example of probabilistic routing. 

Human-mobility tracking data, such as IC-card data of public 

transforation, are pervasive, and its data form is (line, source, de- 

parture time), which includes spatial, temporal, and textual at- 

tributes. As an example in Fig. 1 , the stored passenger data is 

(blue line, p 1 , 9:00am). The drop-off data (station and time) are 

not recorded because in many large cities, buses and subways are 

using equal-price ticket hence there is no need to record these data 

for ticket-fare calculation. Moreover, location based social media 

data (e.g., geo-tagged microblogs) are also useful to make human- 

mobility prediction and over-crowded detection. The main chal- 

lenge here is how to integrate these data to establish an effective 

human-mobility prediction model and then to detect over-crowded 

stations effectively. 

According to the approaches introduced in [33,34] , we use 

multi-source data (human-tracking data and location based social 

media data) to make human-mobility prediction and over-crowded 

detection effectively. Stations can be classified into several levels 

based on their attractiveness. A higher-level station means more 

attractiveness for passengers. If a station is over-crowded, its trans- 

fer cost may increase. We define a set of probabilistic spatial met- 

rics to describe the transfer cost between different lines practi- 

cally. Then, we propose a travel-time threshold and a transfer-cost 

threshold convenient route planning queries. A series of optimiza- 

tion techniques are developed to enhance the query efficiency. 

Notice that we inherit the prediction model and over-crowded 

detection methods from existing studies [33,34] . We improve the 

transfer cost model, and define two novel routing queries namely 

travel-time threshold and transfer-cost threshold queries. Existing 

studies focus on the computation of congestion probability, and 

their techniques cannot be used in the computation of transfer 

costs. To sum up, we make the following contributions in this 

work. 

• We propose and investigate a novel problem of planning con- 

venient routes in public transportation networks. This study is 

useful in many real applications, such as travel planning and 

recommendation and location based services in general. 

• We define two novel travel-time threshold and transfer-cost 

threshold routing queries and the corresponding probabilistic 

spatial metrics practically. 

• We develop two efficient algorithms to compute the travel-time 

threshold and transfer-cost threshold routing queries in public 

transportation networks. 

• We conduct an experimental study to verify the performance of 

the developed algorithms. 

2. Preliminaries 

2.1. Multimodal data 

We model a public transportation network by a connected and 

undirected graph G ( V, E ), where V is a set of vertices (stations) and 

E is a set of edges (paths between two adjacent stations). We as- 

sign a weight to each edge to represent its travel time. A pub- 

lic transportation network includes several bus lines and subway 

lines. 

IC card data are stored in the form of (line, source, departure 

time). Location based social media data (e.g., geo-tagged tweets, 

geo-tagged microblogs) are also useful in station classification. 

These data are in the form of (location, timestamp, short text). 

During a time period, we use the density of geo-tagged microblogs 

within a region defined by ( p, r ), where p is a station and r is 

a radius, to define the attractiveness of p . Then, we use the at- 

tractiveness level to detect over-crowded. For example, during the 

peak hours 7:00am ∼ 8:30am, we use the number of geo-tagged 

microblogs spatially close to a station to define the station’s attrac- 

tiveness. According to the number of geo-tagged microblogs, the 

attractiveness is classified into several levels. A lower level means 

a higher attractiveness. 

Notice that we share the definitions of public transportation 

networks, IC card data, and location based social media data with 

existing studies [33,34] . 

2.2. Human-mobility prediction and over-crowded Station Detection 

As introduced in [33,34] , the human-mobility prediction model 

is based on priority ranking. Given a subway line L , a start station 

p , a moving direction, and a following station p i , the drop-off prob- 

ability of p i is computed by 

p i .prob = e −p i .le v el , (1) 

where, p i .prob is the drop-off probability of station p i , p i .level is 

the priority level of p i (the stations are classified into several lev- 

els based on their attractiveness, and a station with a higher level 

means more attractive to passengers), and p i is a following station 

of p . For example, in Fig. 1 , in route r 1 , p 1 is a start station, and p 2 , 

p 3 , p 5 , and p 4 are following stations of p 1 . Then, we normalize the 

original probabilities as 

p i .prob N = 

p i .prob ∑ 

p j ∈ p. f p j .prob 
(2) 

where p i .prob N is the normalized probability of station p i , and p.f 

is the following station set of p . 

The over-crowded station detection method is also detailed 

in [33,34] . Given a station p ∈ G ( V, E ) and a time period ( t s , t e ), 

we count the drop-off probability of all passengers at p during 

( t s , t e ) as count = 

∑ t e 
t s 

p.prob N . If the value of count exceeds the 

passenger capacity τ , p is set to “over-crowded” station and its 

over-crowded probability is set to 100% during ( t s , t e ). Otherwise, 

the over-crowded probability of p during ( t s , t e ) is computed by 

p.prob = 

count 
τ . 

2.3. Transfer Cost 

For a station p in G ( V, E ), its transfer cost cost ( p ) is defined by 

Eq. (3) . 

cost(p) = 

{
0 if C 1 

p.tc + M · p.prob if C 2 
(3) 

C 1 : p.pre and p.next are two stations belonging to the same line, 

such as p 2 ∈ r 1 in Fig. 1 , where p 2 .pre = p 1 and p 2 .next = p 3 in 

route r 1 . 

C 2 : p.pre and p.next are two stations belonging to different lines, 

and p is a transfer station, such as p 6 ∈ r 2 in Fig. 1 , where p 6 .pre = 

p 2 and p 6 .next = p 5 in route r 2 . p.tc is the normal transfer cost 

between two different lines, M is the delay time when the over- 

crowded occurs, and p.prob is the over-crowded probability. 
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