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a b s t r a c t 

Spatial attention in humans and animals involves the visual pathway and the superior colliculus, which 

integrate multimodal information. Recent research has shown that affective stimuli play an important role 

in attentional mechanisms, and behavioral studies show that the focus of attention in a given region of 

the visual field is increased when affective stimuli are present. This work proposes a neurocomputational 

model that learns to attend to emotional expressions and to modulate emotion recognition. Our model 

consists of a deep architecture which implements convolutional neural networks to learn the location of 

emotional expressions in a cluttered scene. We performed a number of experiments for detecting regions 

of interest, based on emotion stimuli, and show that the attention model improves emotion expression 

recognition when used as emotional attention modulator. Finally, we analyze the internal representations 

of the learned neural filters and discuss their role in the performance of our model. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Visual spatial attention allows animals and humans to process 

relevant environmental stimuli while suppressing irrelevant infor- 

mation. Several brain areas and neural mechanisms have been 

identified to be involved in the processing of spatial attention dur- 

ing perception [9] . For instance, it has been found that the superior 

colliculus (SC) – a midbrain structure responsible for the integra- 

tion of audiovisual stimuli – plays a crucial role in spatial attention, 

more specifically in the process of target selection and estimating 

motor consequences such as saccades, i.e. quick eye movements to 

control the direction of fixation [24] . The integration of audiovisual 

stimuli in the SC has been extensively investigated from a neu- 

rophysiological perspective [30] , with different computational ap- 

proaches modeling the integration of multiple perceptual cues for 

triggering spatial attention in line with neurobehavioral evidence 

[4] . 

Converging findings suggest that selective attention is modu- 

lated by the affective significance of sensory inputs [32] . More 

specifically, it has been argued that emotional salience has a di- 

rect influence on attention and that neural processes responsible 
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for emotional attention may supplement and even compete with 

other top-down mechanisms of perception. Behavioral studies have 

shown that people pay more attention to emotional rather than 

neutral stimuli and that these effects often are reflexive and in- 

voluntary, e.g. visual targets expressing an emotion such as happy 

or angry are found faster among distractors than targets without 

such emotional values [10,35] . Phelps et al. [27] showed that the 

visual detection threshold for low-contrast stimuli is improved if 

emotional cues are present, thus suggesting the existence of an 

emotion-driven mechanism to capture spatial attention. Additional 

studies suggest that in the case of limited attentional resources, 

emotional information is prioritized over non-affective cues 

[13,33] . These findings together indicate that emotional salience 

has a strong role in capturing attention, and emotional bias is also 

subject to a set of different non-affective regulatory effects. 

Converging findings suggest that selective attention, processed 

in the SC, is modulated by the affective significance of sensory in- 

puts [32] . In particular, it has been argued that emotional salience 

has a direct influence on attention and that neural processes re- 

sponsible for emotional attention may supplement and even com- 

pete with other top-down mechanisms of recognition. Behavioral 

studies have shown that people pay more attention to emotional 

rather than neutral stimuli and that these effects often are reflex- 

ive and involuntary, e.g. visual targets expressing an emotion such 

as happy or angry are found faster among distractors than targets 

without such emotional values [33,35] . 
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From a human–robot interaction (HRI) perspective, different 

computational models have been proposed for the detection and 

recognition of emotional expressions [1] . Different cues may carry 

emotional information such as face expressions, sound (voice pitch 

and intensity), and body movements [18] . It has been shown that 

the combination of these cues increases recognition accuracy [6] , 

suggesting that models for the robust processing of emotional 

states should feature multimodal properties for the meaningful 

integration of a set of available perceptual cues. In this context, 

[12] established six universal emotions that exhibit invariance to 

cultural and racial factors: “Anger”, “Disgust”, “Fear”, “Happiness”, 

“Surprise”, and “Sadness”. However, for some HRI applications, 

emotional states were classified in terms of positive or negative 

emotions for triggering pro-active robot behaviors [3] . 

With the advance of deep learning networks, most of the re- 

cent work involves the use of neural architectures. The ones with 

the best performance and generalization apply different classifiers 

to different descriptors [7,22,26] , and there is no consensus on a 

universal emotion recognition system. Most of these systems are 

applied to one modality only and reach a good performance for 

specific tasks. However, all these works rely on face detection mod- 

els, which are not related to emotion recognition. Although such 

face detection models work well in controlled scenarios, they show 

poor performance when applied in complex scenarios [25,31] . 

As an extension of previous work aiming at emotion recogni- 

tion [2] , in this paper we investigated the modulation mechanisms 

of emotion-driven attention and implemented a deep neural archi- 

tecture for the detection of emotional stimuli in a natural scene. 

We trained our model to distinguish between neutral and happy 

expressions conveyed by facial features and body movement and 

used this information as a modulator to our perception model, im- 

proving its recognition capabilities. 

We show that although the input is composed of a single im- 

age sequence containing both, face and body movement cues, the 

model will autonomously learn separate cue-specific filters. In con- 

trast to traditional deep learning models using discrete target la- 

bels for modulating the learning process, we use probability distri- 

butions that allow the model to estimate the location of interest, 

i.e. the region in the image that triggers selective attention. Inter- 

estingly, after using teaching signals with only one emotional ex- 

pression in the image, experiments have shown that the model is 

able to produce congruent probability distributions for more than 

one expression present in the scene. We evaluated our system with 

a bi-modal face and body benchmark dataset, showing that the 

combination of facial properties and body movements significantly 

improves the detection of emotion-relevant areas in the image. 

2. Deep emotional attention model 

Our model combines the idea of hierarchical learning and se- 

lective emotional attention using convolutional neural networks 

(CNN). Our approach differs from traditional CNN-based ap- 

proaches by two factors: first, the input stimuli are composed of 

the whole scene, which may or may not contain people expressing 

emotions. Second, the network is trained to (a) localize where the 

emotion expression is and (b) identify if the detected emotion ex- 

pression is interesting enough to attract the attention of the model. 

CNNs were used for several visual recognition tasks, starting 

with the Neocognitron proposed by Fukushima [15] . In most of the 

cases the CNNs were used to learn hierarchical descriptors from 

the input stimuli and describe the input data in a smaller, but 

highly abstract representation. In our work, we do not use the CNN 

as a classification technique. We employ the convolutional units 

as feature descriptors, but instead of learning hierarchical contours 

and shapes, which is commonly used in general image recognition 

tasks, they learn spatial information as discussed by Speck et al. 

[29] . 

We use our model to detect emotional events conveyed by face 

expressions and body movements. In this scenario, each convolu- 

tional unit learns how to process facial and movement features 

from the whole image. We differed our work from simple clas- 

sification tasks by not tuning the convolutional units to describe 

forms, but rather to identify where an expression is located in the 

image. Therefore, we implement a hierarchical localization repre- 

sentation where each layer deals with a sub-region of the im- 

age. The first layers will learn how to detect Regions of Inter- 

est (ROI) which will then be fine-tuned in the deeper layers. Be- 

cause the pooling units increase the spatial invariance, we only 

apply them in our last layers, which means that our first layers 

are only composed of convolutional units stacked together. In this 

Section 2 we describe our model, starting with common CNNs and 

our emotional attention model. To train our network as a localiza- 

tion model, we use a different learning strategy based on probabil- 

ity density functions, which will also be explained in this section. 

2.1. Convolutional neural networks 

Each layer of the CNN has a set of different convolutional units 

that increase the capability to learn different features from the 

same region in the image. This operation generates different fil- 

tered outputs, or filter maps, one for each unit. The pooling units 

in each of these filter maps are generating spatial invariance. Each 

set of filters acts in a receptive field in the input stimuli. The acti- 

vation of each unit v xy 
nc at ( x, y ) of the n th filter in the c th layer is 

given by 

v xy 
nc = max 

( 

b nc + 

∑ 

m 

H ∑ 

h =1 

W ∑ 

w =1 

w 

hw 

(c−1) m 

v (x + h )(y + w ) 
(c−1) m 

, 0 

) 

, (1) 

where max ( ·, 0) represents the rectified linear function, shown to 

be effective for training deep neural architectures [16] , b nc is the 

bias for the n th feature map of the c th layer, m indexes over the set 

of feature maps in the ( c −1) layer connected to the current layer 

c , w 

hw 

(c−1) m 

is the weight of the connection between the unit ( h, 

w ) within a receptive field, connected to the previous layer c − 1 , 

and to the filter map m. H and W are the height and width of the 

receptive field. 

In the pooling layers, a receptive field of the previous filter map 

is connected to a pooling unit in the current layer, reducing the 

dimensionality of the feature maps. The pooling units generate the 

maximum activation of the receptive field u ( x, y ) which is defined 

as: 

a j = max n ×n ( v nc u (x, y ) ) , (2) 

where v nc is the output of the convolutional unit. In this function, 

the pooling unit computes the maximum activation among the re- 

ceptive field u ( x, y ). The maximum operation down-samples the 

feature map maintaining the input structure. 

2.2. Sequence processing 

In a traditional CNN, convolutional units are connected to a sin- 

gle input stimulus generating a representation of that single input. 

As we are dealing with sequential data, our representation is a se- 

ries of stimuli which may affect the representation of each other. 

Therefore, we use the cubic receptive fields, implemented in the 

convolutional units by stacking filters together to be applied in the 

same region of different input stimuli [21] . Then, it is possible to 

create a representation of the whole sequence, which will be tuned 

to adapt to the presence of patterns in the sequence as a whole 
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