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a b s t r a c t 

In this paper, the exponential weighted entropy (EWE) and exponential weighted mutual information 

(EWMI) are proposed as the more generalized forms of Shannon entropy and mutual information (MI), 

respectively. They are position-related and causal systems that redefine the foundations of information- 

theoretic metrics. As the special forms of the weighted entropy and the weighted mutual information, 

EWE and EWMI have been proved that they preserve nonnegativity and concavity properties similar to 

Shannon frameworks. They can be adopted as the information measures in spatial interaction modeling. 

Paralleling with the normalized mutual information (NMI), the normalized exponential weighted mutual 

information (NEWMI) is also investigated. Image registration experiments demonstrate that EWMI and 

NEWMI algorithms can achieve higher aligned accuracy than MI and NMI algorithms. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Since Shannon’s original work in [1] , entropy has been viewed 

as a kernel information measure of the uncertainty associated with 

a random variable. It has gained wide interest in signal processing, 

coding, data compression, and the other various fields. Mutual in- 

formation (MI) is a quantity that measures the mutual dependence 

of the two variables. It is often recognized as an effective similarity 

measure in signal processing. 

In this paper, we consider ( X, Y ) as the discrete random variable 

(r.v.) over a state space �×� with the joint probability distribution 

function (pdf) p ( i, j ), marginal pdfs p X ( i ) and p Y ( j ). We also consider 

the conditional pdf p X | Y ( i | j ) of X given Y defined over �. Note that 

p ( i ), p ( j ), and p ( i | j ) are also used to mean p X ( i ), p Y ( j ), and p X | Y ( i | j ), 

respectively. 

Shannon entropy [1] of r.v. X was defined by 

H(X ) = −
∞ ∑ 

i =1 

p(i ) log p(i ) (1) 

Based on Shannon entropy, MI and the normalized mutual infor- 

mation (NMI) were proposed as the similar measure in [1,2] . 

Shannon frameworks have the drawbacks of being position-free 

and memoryless [3] . They characterize the objective information of 

events occurrence. In other terms, they only consider the pdf of an 
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event, regardless the distribution of r.v.s. As a consequence, a ran- 

dom variable X possesses the same Shannon entropy as X + a, for 

any a ∈ R . In some applications, besides the objective information, 

the subjective information or utility about a goal of events occur- 

rence should also be taken into account. This leads to the proposi- 

tions of the weighted entropy [3] and the weighted MI [4] . 

Under the axiomatic framework of entropy [5] , the weighted 

entropy [3] of r.v. X ∼ p ( i ) was defined as 

H 

w (X ) = −
∞ ∑ 

i =1 

ip(i ) log p(i ) (2) 

There are different versions of the weighted MI and the normalized 

weighted MI. A typical version of the weighted MI of r.v.s ( X, Y ) ∼
p ( i, j ) was given by [4] 

I w (X, Y ) = 

∞ ∑ 

i =1 

∞ ∑ 

j=1 

w (i, j) p(i, j) log 
p(i, j) 

p(i ) p( j) 
(3) 

Since the additivity hypothesis in thermodynamics, Shannon en- 

tropy neglects the correlations between the subsystems, whereas 

non-extensive processes are common at many physical levels in 

statistical mechanics and atomic physics [6] . There are two ways 

to overcome this intrinsic drawbacks. The one way is to extend the 

additivity to nonadditivity, such as Rényi entropy [7] and Tsallis 

entropy [6,8,9] . The other way is taking some prior statistical infor- 

mation into account [10] . In (2), the weight function i is too simple. 

In (3), a weight w ( i, j ) is placed on the probability of each variable 

value co-occurrence p ( i, j ), which leads it to be difficult to study 

their mathematical properties. Till now, there still lack of theoretic 
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research on the weighted entropy and the weighted MI. Since 

the exponential weighted method has been viewed as an efficient 

tool in engineering [11] , in this paper, the exponential weighted 

entropy is proposed as the generalized form of the (weighted) 

entropy [1,3] and exponential weighted mutual information is 

proposed as the special form of the weighted mutual information 

introduced in [4] . They are the extensions of Shannon frameworks 

and generalize the corresponding concepts in [12] that defined in 

a generalized Euclidean metric space based on fractional calculus. 

The rest of this paper is organized as follows. EWE, EWMI, and 

NEWMI are proposed in Section 2 . The concavity properties are 

studied in Section 3 . Section 4 provides applications in image reg- 

istration. We conclude with a summary of content in Section 5 . 

2. Exponential weighted entropy and exponential weighted 

mutual information 

Let f ( i ) be bounded a function and r.v. X ∼ p(i ) , i = 1 , 2 , . . . , we 

use W 

α
X 

as the exponential weighted summation operator with or- 

der α on p ( i ) to mean that 

W 

α
X (p(i )) = 

∞ ∑ 

i =1 

f 1 −α(i ) p(i ) (α ∈ R ) (4) 

It is worth noting that the exponential weighted summation oper- 

ator W 

α
X 

in Eq. (4) works on the probability distribution function 

of r.v. X ∼ p(i ) , i = 1 , 2 , . . . , and not on a single p ( i ). 

We call f ( i ) the weight function and f 1 −α(i ) the exponential 

weight function. To keep consistent with the formula in [12] , we 

use f 1 −α rather than f α in this paper. For simply, W 

α
X 

is often writ- 

ten as W 

α if it is clear that the weight summation iterates through 

i with respect to r.v. X in context. 

Definition 1. The exponential weighted entropy (EWE) of r.v. 

X ∼ p ( i ) with order α is defined by 

H 

α
w 

(X ) = −W 

α p(i ) log p(i ) (α ∈ R ) (5) 

Generally, a positive real function can be adopted as the weight 

function in (5). We can normalize f ( i ), and thus, f ( i ) is always sup- 

posed 0 < f ( i ) ≤ 1 throughout this paper. We also write H 

α
w 

(p) or 

H 

α
w 

(p(i )) for E.q. 5 . The log is to the base e . 

Considering the property of pdf in probability space, the non- 

negativity of EWE is easy to obtain, e.g., H 

α
w 

(X ) ≥ 0 . 

Definition 2. The joint exponential weighted entropy of r.v.s ( X, Y ) 

∼ p ( i, j ) with order α is defined as 

H 

α
w 

(X, Y ) = −W 

α
X 

∞ ∑ 

j=1 

p(i, j) log p(i, j) (6) 

Definition 3. The conditional exponential weighted entropy of r.v.s 

( X, Y ) ∼ p ( i, j ) with order α is defined as 

H 

α
w 

(Y | X ) = −W 

α
X 

∞ ∑ 

j=1 

p(i, j) log p( j| i ) (7) 

Theorem 1. H 

α
w 

(X, Y ) = H 

α
w 

(X ) + H 

α
w 

(Y | X ) . 

Proof. We obtain 

H 

α
w 

(Y | X ) = −W 

α
X 

∞ ∑ 

j=1 

p(i, j) log 
p(i, j) 

p(i ) 

= −W 

α
X 

∞ ∑ 

j=1 

p(i, j) log p(i, j) + W 

α
X 

∞ ∑ 

j=1 

p(i, j) log p(i ) 

= H 

α
w 

(X, Y ) − H 

α
w 

(X ) �

Corollary 1. H 

α
w 

(X, Y ) ≥ H 

α
w 

(X ) and H 

α
w 

(X, Y ) ≥ H 

α
w 

(Y | X ) . 

Definition 4. The exponential weighted mutual information 

(EWMI) of ( X, Y ) ∼ p ( i, j ) with order α is defined by 

I αw 

(X, Y ) = W 

α
X 

∞ ∑ 

j=1 

p(i, j) log 
p(i, j) 

p(i ) p( j) 
(8) 

Theorem 2. I αw 

(X, Y ) ≥ 0 , with equality if and only if X and Y are 

independent. 

Proof. Using the Log Sum Inequality [13] , we obtain 

I αw 

(X, Y ) = W 

α
X 

∞ ∑ 

j=1 

p(i, j) log 
p(i, j) 

p(i ) p( j) 

≥ W 

α
X 

∞ ∑ 

j=1 

p(i, j) · log 

∑ 

j p(i, j) ∑ 

j p(i ) p( j) 

= W 

α p(i ) log 
p(i ) 

p(i ) 

= 0 (9) 

The equality in (9) is true if and only if p(i, j) = p(i ) p( j) for all 

i = 1 , 2 , . . . , which means X and Y are independent. �

Theorem 3. For two r.v.s X and Y, we have 

I αw 

(X, Y ) = K 

α
w 

(Y ) − H 

α
w 

(Y | X ) (10) 

where K 

α
w 

(Y ) = −W 

α
X 

∑ ∞ 

j=1 p(i, j) log p( j) . 

Proof. We obtain 

I αw 

(X, Y ) = W 

α
X 

∞ ∑ 

j=1 

p(i, j) log 
p(i, j) 

p(i ) p( j) 

= W 

α
X 

∞ ∑ 

j=1 

p(i, j) log 
p( j| i ) 
p( j) 

= W 

α
X 

∞ ∑ 

j=1 

p(i, j) 
(
log p( j| i ) − log p( j) 

)

= K 

α
w 

(Y ) − H 

α
w 

(Y | X ) 

Especially, I αw 

(X, X ) = K 

α
w 

(X ) − H 

α
w 

(X | X ) = H 

α
w 

(X ) . �

Corollary 2. I αw 

(X, Y ) = H 

α
w 

(X ) + K 

α
w 

(Y ) − H 

α
w 

(X, Y ) . 

NMI often acts as a robust and accurate similarity measure in sig- 

nal processing [2] . Similarly, the normalized exponential weighted MI 

can be similarly defined. 

Definition 5. The normalized exponential weighted mutual infor- 

mation (NEWMI) of r.v.s ( X, Y ) with order α is defined as 

NI αw 

(X, Y ) = 

H 

α
w 

(X ) + K 

α
w 

(Y ) 

H 

α
w 

( X, Y ) 
(11) 

Theorem 4. 1 ≤ NI αw 

(X, Y ) ≤ 2 . 

Proof. It is easy to verify that K 

α
w 

(Y ) ≥ 0 . We obtain 

K 

α
w 

(Y ) ≤ −W 

α
X 

∞ ∑ 

j=1 

p(i, j) log p(i, j) = H 

α
w 

(X, Y ) 

Since 

H 

α
w 

(X, Y ) = H 

α
w 

(X ) + H 

α
w 

(Y | X ) ≥ H 

α
w 

(X ) 

I αw 

(X, Y ) = H 

α
w 

(X ) + K 

α
w 

(Y ) − H 

α
w 

(X, Y ) ≥ 0 

we obtain H 

α
w 

(X ) ≤ H 

α
w 

(X, Y ) ≤ H 

α
w 

(X ) + K 

α
w 

(Y ) . 

Similar as 1 ≤ NI ( X, Y ) ≤ 2 [13] , we have 1 ≤ NI αw 

(X, Y ) ≤ 2 . 

�

Corollary 3. K 

α
w 

(Y ) ≥ H 

α
w 

(Y | X ) . 
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