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a b s t r a c t 

We propose a new subspace clustering method that integrates feature and manifold learning while learn- 

ing a low-rank representation of the data in a single model. This new model seeks a low-rank represen- 

tation of the data using only the most relevant features in both linear and nonlinear spaces, which helps 

reveal more accurate data relationships in both linear and nonlinear spaces, because data relationships 

can be less afflicted by irrelevant features. Moreover, the graph Laplacian is updated according to the 

learning process, which essentially differs from existing nonlinear subspace clustering methods that re- 

quire constructing a graph Laplacian as an independent preprocessing step. Thus the learning processes of 

features and manifold mutually enhance each other and lead to powerful data representations. Extensive 

experimental results confirm the effectiveness of the proposed method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

It has been increasingly common to use high-dimensional 

datasets, such as images, videos, text, and more others, in machine 

learning and data mining tasks. High-dimensional data often lie on 

a union of multiple low-dimensional structures rather than uni- 

formly distributed [1] and therefore it is helpful to preserve and 

reveal latent structures of such data by recovering low-dimensional 

subspaces. For example, in Fig. 1 , rather than uniformly distributed 

in the R 

3 space, the data points lie on a union of two lines and 

two planes, which forms a lower-dimensional structure. 

To find such a low-dimensional structure, one usually needs to 

cluster data points into different groups such that each group can 

be fitted with a subspace. Recovering the underlying subspaces in- 

troduces the problem of subspace segmentation, which is formally 

defined as follows: 

Definition 1. (Subspace segmentation [2,3] ) Given a set of sample 

vectors X = [ X 1 , . . . , X k ] = [ x 1 , . . . , x n ] ∈ R 

d×n drawn from a union 

of k subspaces {S i } k i =1 , where X i is a collection of n i samples drawn 

from the subspace S i , with n = 

∑ k 
i =1 n i , the task of subspace seg- 

mentation is to segment the samples according to the underlying 

subspaces they are drawn from. 

Subspace segmentation has been widely studied due to its nu- 

merous applications in computer vision, such as face recognition 
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[4,5] , motion segmentation [6,7] , and image segmentation [8,9] . 

Subspace segmentation methods can be mainly divided into four 

categories: algebraic methods [10] , statistical methods [9] , itera- 

tive methods [11] , and spectral clustering based methods [1,12,13] ; 

see [2] for reviews. Recently, spectral clustering based subspace 

clustering methods have shown success in subspace segmenta- 

tion. Among them, low-rank representation (LRR) [12] and sparse 

subspace clustering (SSC) [1] are state-of-the-art methods. These 

methods construct data relationships using global data informa- 

tion, which seek a representation coefficient matrix of the data by 

finding a linear representation for each example with respect to 

the collection of all data points. Then they build a sample affinity 

matrix based on the representation, followed by spectral clustering 

[14] to segment the data points. Both LRR and SSC seek a linear 

representation of the data, however they require different struc- 

tures of the low-dimensional representation, where LRR requires it 

to be low-rank while SSC requires it to be sparse, respectively. Re- 

cently, some new methods [13,15] marry the advantages from LRR 

and SSC and imposes simultaneously low-rank and sparse structure 

on the representation coefficients. 

Learning low-rank and sparse models have been well studied 

[16–18] . However, LRR and SSC model data relationships in the 

original space, which only consider linear structures of the data in 

Euclidean space. This approach takes no consideration of nonlinear 

structures of the data in nonlinear space, which is usually impor- 

tant for clustering tasks. To address this problem, recent studies 

consider nonlinear structures of the data in a kernel feature space 

or on a manifold. For example, kernel sparse subspace clustering 

(KSSC) [19] , kernel LRR (RKLRR) [20] find sparse or low-rank 

representation of the data in kernel feature space; kernelized LRR 
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Fig. 1. A set of data points in R 

3 are drawn from a union of four subspaces, i.e., 

two planes and two lines. 

on Grassman manifold (KGLRR) [21] finds low-rank representation 

of the data on manifold. These methods are based on LRR and SSC 

models, while enhancing the capabilities of recovering nonlinear 

data relationships by nonlinear techniques. However, the above- 

mentioned methods, including the linear and nonlinear models, 

may be problematic by finding the representation coefficients or 

constructing kernel matrix or graph Laplacian using all features 

of the data, because it is well known that noisy, redundant, or 

irrelevant features often exist in high-dimensional data [22] and 

they may degrade the learning performance on such data. In fact, 

feature selection has been proven important and thus is often 

applied as a pre-processing step for learning high-dimensional 

data [23,24] . For unsupervised learning, there is often a “chicken- 

and-egg” problem for processing feature selection and clustering, 

because unsupervised feature selection is often transformed into 

a supervised one by the existing unsupervised feature selection 

methods, such as multi-class feature selection (MCFS) [25] , which 

requires clustering for preprocessing. However, this procedure does 

not meet the demand of finding important features as input for 

subspace clustering. Moreover, it has been demonstrated that it is 

inappropriate for some problems to involve a two-step processing 

procedure [26,27] . To avoid such “chicken-and-egg” situation as 

well as the potential problem in a two-step learning procedure, 

feature selection embedded subspace clustering (FSC) [28] in- 

tegrates feature selection with subspace recovery in a single, 

seamlessly integrated framework for enhanced performance. In 

fact, integrating multi-tasks in a single model has been shown 

successful and important. For example, [29] reduces the dimension 

of input data with an embedded projection; [30] simultaneously 

performs semi-NMF and PCA to identify a partition of the data 

by seeking an optimal subspace of multi-dimensional variables, 

which provides simpler and more interpretable solutions using 

low-dimensional representation. FSC learns important features and 

use these features to build data relationships by finding a low-rank 

representation of the data. However, it only considers recovering 

structures of the data with a subspace of features in the Euclidean 

space, and thus the built representation coefficients only capture 

linear structures of the data. Therefore, FSC is unable to recovery 

nonlinear structures of the data. To simultaneously resolve the 

limitations and marry the advantages of FSC and nonlinear sub- 

space clustering methods, this paper proposes to simultaneously 

perform feature selection and subspace recovery in the original 

instance space as well as on a manifold, which enhances the 

capability of constructing both linear and nonlinear structures 

of the data using most relevant features to essentially improve 

the clustering performance. In this case, the graph Laplacian is 

iteratively adapted according to the feature selection and learning 

process, which renders cleaner graph Laplacian to be learned. 

It is noted that this strategy overcomes a general drawback of 

the nonlinear subspace clustering methods, which constructs the 

kernel matrix or graph Laplacian as a preprocessing step because 

they are built independently before processing the data. 

We summarize the main contributions of this paper as follows: 

• A new subspace clustering method is proposed which seam- 

lessly incorporates feature learning to alleviate the adverse ef- 

fect of irrelevant or less important features when finding the 

representation coefficients for the data; 

• The new subspace clustering model incorporates manifold 

learning, which enhances the capability of exploiting nonlin- 

ear structures of the data. It constructs the graph based on 

the most relevant features obtained during the learning process, 

and thus the graph is less afflicted with irrelevant and grossly 

corrupted features and is more discriminative. The graph Lapla- 

cian is learned iteratively based on the feature learning pro- 

cess, which starkly differs from widely used nonlinear tech- 

niques that construct a kernel matrix or graph Laplacian as 

input from an independent preprocessing step. Therefore, the 

proposed subspace clustering method assimilates as well as en- 

ables feature learning and manifold learning jointly, providing 

a powerful data representation; 

• The integrated model allows us to simultaneously achieve mul- 

tiple objectives in a mutually enhancing manner, that are es- 

sentially important for more representative data representation; 

• Our framework allows for efficient optimization, where we ob- 

serve fast convergence in the experiments; 

• Extensive experimental results verify the effectiveness of the 

proposed model and algorithm and show significant improve- 

ment compared to state-of-the-art algorithms. 

The rest of this paper is organized as follows. We briefly dis- 

cuss closely related work in Section 2 . Then we present the new 

subspace clustering model in Section 3 . Its optimization and com- 

plexity are discussed in Sections 4 and 5 , respectively. Exten- 

sive experimental results are demonstrated in Section 7 . Finally, 

Section 8 concludes the paper. 

2. Related work 

Recently, spectral clustering-based subspace clustering meth- 

ods have drawn increasing attentions due to their effectiveness 

in real world applications [1,12,31–35] . Among these methods, SSC 

and LRR have become state-of-the-art due to elegant theories and 

promising performance in handling clustering tasks. Given a collec- 

tion of n data points, X = [ x 1 , . . . , x n ] ∈ R 

d×n , drawn from k sub- 

spaces, where each d -dimensional column vector is a data point, 

the basic assumption of SSC and LRR is that each data point can be 

represented by all data points and thus the data is self-expressive 

and can be modeled as X = XZ + E, where Z ∈ R 

n ×n is the coeffi- 

cient matrix and E ∈ R 

d×n denotes the fitting error. In particular, 

SSC requires Z to be sparse while LRR requires Z to have low rank, 

which leads to the following two models: 

( SSC ) min 

Z 
‖ Z‖ 1 + λ‖ S‖ 1 + γ ‖ E‖ 

2 
F 

s.t. X = X Z + E + S, 1 

T 
n Z = 1 n , diag (Z) = 0 , (1) 

and 

( LRR ) min 

Z 
‖ Z‖ ∗ + λ‖ E‖ 2 , 1 s.t. X = X Z + E, (2) 

where λ > 0 and γ > 0 are two balancing parameters, S is the 

sparse corruptions, 1 n is a n -dimensional column vector of 1s, 
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