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a b s t r a c t 

In this paper, the distributed state estimation (DSE) problem for a class of discrete-time nonlinear sys- 

tems over sensor networks is investigated. First, based on weighted average consensus, a new DSE algo- 

rithm named distributed cubature information filtering (DCIF) algorithm is developed to address the high- 

dimensional nonlinear DSE problem. The proposed filtering algorithm not only has such advantages as 

easy initialization and less computation burden, but also possesses the guaranteed stability regardless of 

consensus steps. Moreover, it is proved that the corresponding estimation is consistent, and its mean- 

squared estimation errors are exponentially bounded. Finally, numerical simulations are given to verify 

the effectiveness of DCIF. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

With broad applications of large-scale sensor networks in the 

fields such as target tracking, environment monitoring and wire- 

less camera networking, the study of distributed state estimation 

(DSE) in various sensor networks has risen to a plethora of pop- 

ularities due to its distinct advantages over most of the central- 

ized estimation techniques [1] . The major advantages of DSE lie in 

scalability, low communication burden, and robustness to individ- 

ual sensor failures [2,3] . During the past two decades, many tech- 

niques have been developed to address a variety of problems re- 

lated to DSE (see, e.g., [4–21] ). Among the existing techniques, the 

consensus-based methodology is the most popular one. For exam- 

ple, with respect to linear discrete-time Gaussian systems, Olfati- 

Saber et al. have proposed the distributed Kalman filtering (DKF) 

algorithm by exploiting average consensus algorithms [7–9] . Fur- 

thermore, based on the extended Kalman filtering (EKF) algorithm, 

DKF algorithm is directly extended to nonlinear Gaussian systems, 

which yields the distributed extended Kalman filtering (DEKF) al- 

gorithm [10] . However, DEKF algorithm has inherent drawbacks 

such as instability and low-order accuracy when systems experi- 

ence high nonlinearities. Compared with EKF algorithm, the un- 
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scented Kalman filtering (UKF) algorithm turns out to be of higher 

stability robustness and better estimation accuracy. By exploiting a 

statistical linear regression approach and reconstructing a pseudo 

measurement matrix, Li and Jia have presented a distributed UKF 

algorithm for jump Markov nonlinear systems [11] . Lately, without 

approximating any pseudo measurement matrices, a weighted av- 

erage consensus-based UKF algorithm has been developed in [12] . 

A crucial limitation about the UKF-like techniques is that the 

non-positive definite covariance matrix may arise, especially when 

systems are high-dimensional [22,23] . To overcome this, the cuba- 

ture Kalman filter (CKF) is proposed for the high-dimensional non- 

linear state estimation [22] . Furthermore, the cubature information 

filter (CIF), an algebraical equivalence of CKF, is developed in [24] . 

More precisely, CKF is a Gaussian approximation of a Bayesian fil- 

ter, but provides estimations more precise and stable than most 

existing Gaussian filters [24] . Thus, it is no wonder that CKF has 

been broadly studied in various settings [25–27] . Recently, with 

rapid developments of sensor technologies and increasing demands 

of large-scale sensor networking, researchers have turned their at- 

tention to designing the distributed CKF (or simply, DCKF) in net- 

worked environments [13–17] . Unfortunately, several consensus fil- 

tering problems encountered in the DCKF setting have not been 

examined satisfactorily despite their practical importance. 

In general, the consensus-based DSE approaches can be classi- 

fied into three groups. The first group is consensus on estimates 
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(CE), which performs an average consensus on local state esti- 

mates [7] . In this view, the work of [13] belongs to this group. 

However, CE involves no error covariance matrices. As is known, 

error covariance matrices contain information useful to improve 

the filter performance. The second group is consensus on measure- 

ments (CM) [8,9] , which performs consensus on the local innova- 

tion parts [12] . It is shown that when the number of consensus 

steps during each sampling interval is sufficiently large, CM can ap- 

proximate the correction step of the centralized Kalman-like filter. 

In this sense, the works [14–16] fall into this group; more specif- 

ically, these techniques adopt different forms of CKF to achieve 

CM. Indeed, CIF is used in [14] , while the square root CIF is em- 

ployed in [15,16] to avoid numerically sensitive matrix operations. 

The third group falls into consensus on information (CI) [28] . From 

an algorithm viewpoint, CI is nothing but reaching a local aver- 

age on information vectors and information matrices. Stability of CI 

algorithms can be guaranteed for any number of consensus steps 

(even a single one). As mentioned above, the achievements in the 

DCKF setting have been obtained either in the CE or CM paradigm. 

In this paper, we focus our attention on embedding the CI archi- 

tecture into DCKF to extract possible benefits from the former’s 

positive features. The resulting algorithm is named the distributed 

cubature information filtering (DCIF) algorithm. 

A fundamental property of an estimator is consistency [29] , 

which is significant for information fusion over sensor networks. 

When fusing information with unknown correlations, simply ne- 

glecting the unknown correlations may cause inconsistency in es- 

timation [30] . Ref. [28] has reported results about consistency anal- 

ysis. More recently, the features about consistency have also been 

investigated in [30] . However, the results about consistency analy- 

sis have been achieved only in the linear setting. Hence, it is also 

our goal to give a rigorous proof to the consistency of our pro- 

posed DCIF algorithm but in the nonlinear setting. By constructing 

a collective Lyapunov function, it has been shown that under net- 

work connectivity and collective observability, the distributed EKF 

algorithm in [31] can achieve local stability. With a different view- 

point, the stochastic boundedness of estimation errors for a class 

of consensus-based UKF algorithms has been verified by means of 

the stochastic stability lemma in [12] . However, stochastic stability 

analysis remains unsolved in the DCKF setting. 

Motivated by the above researches, we explicate our proposed 

DCIF algorithm by exploiting a weighted average consensus ap- 

proach. Furthermore, we attempt to analyze the consistency of 

the proposed DCIF algorithm, while boundedness analysis of es- 

timation errors is attacked. The main contributions include: (1) 

a more accurate and stable distributed nonlinear filtering algo- 

rithm is well-developed, which applies to a wide range (from low 

to high dimensions) of nonlinear DSE problems; (2) by deriving 

a pseudo system matrix and a pseudo measurement matrix, the 

consistency of estimates for a class of consensus-based CIF algo- 

rithms is proven; (3) by means of the stochastic stability lemma, 

the stochastic boundedness of estimation errors for the proposed 

DCIF algorithm is investigated. 

The outline is as follows. Section 2 models the sensor net- 

work in nonlinear dynamic systems. The general CIF algorithm 

is presented in Section 3 . Section 4 develops our proposed DCIF 

algorithm, while its stability analysis is presented in Section 5 . 

Furthermore, Section 6 illustrates numerical simulations. Finally, 

Section 7 concludes this paper. 

Throughout the paper, we write X X T = X (∗) T , X T Y X = (∗) T Y X
and X Y X T = X Y (∗) T to save space. R 

n represents the n -dimensional 

Euclidean space and R 

n ×m represents the set of all n × m real ma- 

trices. ‖·‖ is the Euclidean norm in R 

n . I n is the n × n identity 

matrix and diag (B 1 , B 2 , . . . , B n ) refers to a diagonal matrix with 

its main diagonal matrix block being B 1 , B 2 , . . . , B n . For an arbi- 

trary matrix A, A 

T and A 

−1 denote its transpose and inverse, re- 

spectively; tr{ A } represents the trace of A and A > 0 means A is 

a positive define matrix. E { ·} denotes the expectation operation. 

E 

−1 {·} = (E {·} ) −1 is used for brevity. 

2. Sensor network modeling 

Consider a discrete-time dynamic system with an N -sensor net- 

work ( N is the total number of sensor nodes; in the case of N ≥ 2, 

the sensors are located in a distributed fashion), which possesses 

collectively the following discrete-time nonlinear system subject to 

additive Gaussian noise: { 

x k = f (x k −1 ) + ω k −1 

z s 
k 

= h 

s (x k ) + νs 
k 
, s = 1 , 2 , . . . , N 

(1) 

where x k ∈ R 

n is the state vector of the dynamic system at 

discrete-time instant k . z s 
k 

∈ R 

r represents the measurement vec- 

tor of the s th sensor. The process noise ω k −1 ∈ R 

n and the mea- 

surement noise νs 
k 

∈ R 

r are uncorrelated zero-mean Gaussian white 

sequences with covariance matrices Q k −1 ∈ R 

n ×n and R s 
k 

∈ R 

r×r , re- 

spectively. The first and second equations in (1) are the process 

equation and the measurement equation, respectively. f : R 

n → R 

n 

describes the nonlinear state transition function and h s : R 

n → R 

r 

describes the nonlinear measurement function of the s th sensor. 

These functions are assumed to be known. The communication 

topology of the sensor network is denoted by an undirected graph 

G (N , E ) , where N = { 1 , 2 , . . . , N} is the sensor node set and E is 

the edge set. An edge (s, j) ∈ E means that node j can receive 

data from node s in its neighbors and vice versa. For each node 

s ∈ N , N s = { j| ( j, s ) ∈ E} denotes the set of its neighbors; if node 

s is included at least in one of its neighbors’ sets, we write J s = 

N s ∪ { s } � = ∅ . 

3. Cubature information filtering algorithms 

For each sensor node s , the general CIF algorithm is summa- 

rized as follows, which is a two stage procedure containing time 

update and measurement update. 

(1) Time update: Let m (= 2 n ) cubature points χ s,i 
k −1 | k −1 

∈ R 

n be 

generated based on the state estimate ˆ x s 
k −1 | k −1 

and the square-root 

matrix S s 
k −1 | k −1 

at time step k −1 . 

χ s,i 
k −1 | k −1 

= S s k −1 | k −1 ξi + 

ˆ x s k −1 | k −1 , i = 1 , . . . , m (2) 

where 

ξi = 

{√ 

n e i , 1 ≤ i ≤ n 

−√ 

n e i −n , n + 1 ≤ i ≤ m. 
(3) 

e i is the n -dimensional unit vector with the i th element being 1 

and S s 
k −1 | k −1 

is the square-root matrix of (Y s 
k −1 | k −1 

) −1 . Then, each 

cubature point χ s,i 
k −1 | k −1 

is mapped through the nonlinear state 

transition function f ( ·) as 

χ ∗s,i 
k | k −1 

= f (χ s,i 
k −1 | k −1 

) ∈ R 

n , i = 1 , . . . , m. (4) 

Next, the predicted state ˆ x s 
k | k −1 

, the predicted information matrix 

Y s 
k | k −1 

and the predicted information state vector ˆ y s 
k | k −1 

are deter- 

mined by ⎧ ⎪ ⎨ 

⎪ ⎩ 

ˆ x s 
k | k −1 

= 

1 
m 

�m 

i =1 
χ ∗s,i 

k | k −1 
∈ R 

n 

Y s 
k | k −1 

= [ 1 
m 

�m 

i =1 
χ ∗s,i 

k | k −1 
(∗) T − ˆ x s 

k | k −1 
(∗) T + Q k −1 ] 

−1 ∈ R 

n ×n 

ˆ y s 
k | k −1 

= Y s 
k | k −1 ̂

 x s 
k | k −1 

∈ R 

n . 

(5) 

(2) Measurement update: Firstly, another set of new cubature 

points χ s,i 
k | k −1 

∈ R 

n are produced based on the predicted state ˆ x s 
k | k −1 
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