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a  b  s  t  r  a  c  t

A  novel  and  generic  multi-objective  design  paradigm  is  proposed  which  utilizes  quantum-behaved  PSO
(QPSO)  for  deciding  the  optimal  configuration  of  the LQR  controller  for a given  problem  considering  a  set
of competing  objectives.  There  are  three  main  contributions  introduced  in this  paper  as follows.  (1)  The
standard  QPSO  algorithm  is  reinforced  with  an  informed  initialization  scheme  based  on the  simulated
annealing  algorithm  and  Gaussian  neighborhood  selection  mechanism.  (2)  It is also  augmented  with  a
local search  strategy  which  integrates  the  advantages  of memetic  algorithm  into  conventional  QPSO.  (3)
An  aggregated  dynamic  weighting  criterion  is introduced  that  dynamically  combines  the soft  and  hard
constraints  with  control  objectives  to provide  the  designer  with  a  set  of  Pareto  optimal  solutions  and
lets  her to decide  the  target  solution  based  on  practical  preferences.  The  proposed  method  is  compared
against  a gradient-based  method,  seven  meta-heuristics,  and  the trial-and-error  method  on two  control
benchmarks  using  sensitivity  analysis  and  full  factorial  parameter  selection  and  the  results  are  validated
using  one-tailed  T-test.  The  experimental  results  suggest  that  the proposed  method  outperforms  oppo-
nent methods  in  terms  of controller  effort, measures  associated  with  transient  response  and  criteria
related  to  steady-state.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimal control theory refers to the controller design patterns
that simultaneously satisfy the physical constraints of the con-
trolled process and optimize some predetermined performance
criteria. The evolution of optimal control theory has led to the
emergence of linear quadratic regulators (LQR) – an optimal mul-
tivariable feedback control approach that improves the stability
and minimizes the excursion in state trajectories of a system while
requiring minimum controller effort. Applying LQR technique to a
controllable linear time-invariant (LTI) system results in a set of
optimal feedback gains that minimizes a quadratic criterion and
stabilizes the system [1]. The LQR approach has been utilized in
vast variety of real world engineering applications such as but
not limited to missile guidance [2,3], flight control [4], multiple
spacecraft formation [5], controlling unmanned vehicles [6], active
car suspension [7], ABS break system [8], power converters [9,10],
active power filter [11], and tuning PID controllers [12]. Essentially,
LQR controllers minimize a quadratic cost function also known as
performance index that consists of two penalty matrices including
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state (Q) and control (R) weighting matrices. These two parame-
ters are main design parameters to be selected by the designer
and greatly influence the behavior of the controller. It is worth
noting that it is not a trivial task to decide these two matrices. In
general, deciding the LQR parameters for a given process is a contin-
uous, multimodal and multi-objective optimization problem. For
the simplicity purposes, in most of the applications the problem
is modeled as a single-objective which limits the designer to only
one configuration. In the proposed approach, the problem is con-
sidered as a multi-objective problem and as a result the designer
is provided with a set of Pareto optimal solutions which lets her to
decide the target solution based on some practical preferences.

Traditionally, weighting matrices are determined by the trial-
and-error method in which a domain expert adjusts the weighting
matrices intuitively and then refines them iteratively to obtain
a satisfactory performance. This method is not feasible for
high-dimensional systems and even for simpler systems is labor-
intensive and time-consuming. Bryson’s method [13] is another
iterative method in which initial state and feedback variables are
normalized with respect to their largest permissible and then are
utilized to initialize the weighting matrices. Then, similar to trial-
and-error method, the weighting matrices are gradually refined to
approach the minimum index value. Pole placement [14] is another
popular technique for determining the weighting matrices in which
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the matrices are decided based on the given poles. This approach
neither guarantees a good performance nor the satisfaction of the
constraints. Other approaches have been proposed as well such
as utilizing asymptotic modal properties [15] and expressing the
system as an explicit function of the weighting matrix elements
[16]. Yet they suffer from the similar deficiencies. These classic
approaches are labor-intensive, time-consuming and do not guar-
antee the expected performance. They only aim to minimize the
quadratic performance index and ignore the other competing or
incommensurable control objectives such as minimizing the over-
shoot, rise-time, settling-time, and the steady-state error.

In order to tackle these problems, some studies have utilized
soft computing techniques including but not limited to particle
swarm optimization (PSO) [17], artificial bee colony (ABC) [18], ant
colony optimization (ACO) [19], genetic algorithm (GA) [20], differ-
ential evolution (DE) [21], memetic algorithm (MA) [22], artificial
immune systems (AIS) [23], imperialist competitive algorithm (ICA)
[24], neural networks [25], and fuzzy systems [26]. These meth-
ods can explore the search hyperspace in an informed manner and
converge to the optimal solutions in a few iterations using a combi-
nation of knowledge sharing and individual explorations. The main
problem with most of the computational intelligence techniques is
that they are prone to premature convergence which causes them
to get trapped within the local optima.

In this paper, a novel and generic multi-objective design
paradigm is proposed which utilizes a global convergence guar-
anteed variation of particle swarm optimization (PSO) called
quantum-behaved PSO (QPSO) for deciding the optimal configu-
ration of the LQR controller for a given problem considering a set of
competing objectives including the quadratic performance index,
overshoot, rise-time, settling-time, steady-state error, and inte-
grated absolute error. The proposed method is called reinforced
multi-objective quantum-behaves PSO (RMO-QPSO). The rationale
behind the selection of QPSO as the core optimizer is as follows.
(1) The experimental studies suggest that PSO as the predecessor
of QPSO outperforms GA, DE, MA,  ACO, and ABC in terms of suc-
cess rate, solution quality and processing time [27,28]. It is also
experimentally shown that PSO is scalable, requires less compu-
tational resources, and its processing time grows at a linear rate
with respect to the size of the problem [29]. (2) It is theoretically
guaranteed that the QPSO converges to the global optimum; (3) it
is less sensitive to the bias problem as it has only one parameter,
and (3) it outperforms other PSO variations in finding the optimal
solutions [30].

There are three main contributions introduced in this paper
as follows. (1) The standard QPSO algorithm is reinforced with
an informed initialization based on the simulated annealing
and Gaussian neighborhood selection mechanism. (2) It is also
augmented with a local search strategy which integrates the advan-
tages of memetic algorithm into conventional QPSO. (3) Finally, an
aggregated dynamic weighting criterion is introduced that dynami-
cally combines the soft and hard constraints with control objectives
to provide the designer with a set of Pareto optimal solutions and
lets her to decide the target solution based on practical preferences.
As far as the authors’ knowledge is concerned, this is the first time
that a multi-objective derivation of PSO is applied for deciding the
configuration of LQR controllers.

Without loss of generality, RMO-QPSO is utilized to decide
the configuration of LQR controllers for two  control bench-
marks including: (1) stabilizing an inverted pendulum system,
and (2) controlling a flight landing system. In order to have
comparative studies, nine different techniques (i.e. one trial-and-
error based method, one gradient based technique, and seven
stochastic meta-heuristics) including the trail-and-error method,
Levenberg–Marquardt optimization (LM), GA, DE, ABC, PSO, QPSO,
chaotic PSO (CPSO), and adaptive inertia weighted PSO (AIWPSO)

are utilized to decide the LQR parameters of the same benchmarks.
In order to mitigate the bias problem and have a fair comparison
among the different techniques, full factorial parameter selection
and sensitivity analysis [31] are exploited for all of the applied tech-
niques to find the best parameter setting including population size,
iteration number, etc. The comparative results are also validated
using one-tailed T-test to investigate whether the experimental
results are statistically significant.

The paper is organized as follows. Section 2 provides the math-
ematical foundation of LQR controllers. In Section 3 an overview
of related works is presented. In Section 4, we investigate the con-
cept of multi-objective QPSO. In Section 5, we present the proposed
technique for optimal tuning of LQR controllers and in Section 6 we
discuss the experimental results. Section 7 concludes the paper.

2. Linear quadratic regulators

The LQR is an optimal multivariable feedback control approach
that improves the stability and minimizes the excursion in the state
trajectories of a system while requiring minimum controller effort.
From a Mathematical point of view, for a controllable LTI system
with a state-space model shown in Eq. (1), the LQR  approach con-
structs a linear state feedback law as depicted in Eq. (2):{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

u(t) = −Kx(t) (2)

In these equations, x(t) denotes an n-dimensional state vector,
y(t) presents an r-dimensional output vector, and u(t) is an m-
dimensional control vector. K ∈ � n×m is the optimal state-feedback
gain matrix. The control law in Eq. (2) minimizes the quadratic per-
formance index shown in Eq. (3) which integrates the state and
control energies through the time. In other words, it minimizes the
distance between the process outputs and the desired outputs with
minimum control energy.

J =
∫ ∞

0

(xT Qx + uT Ru)dt (3)

In Eq. (3), Q ∈ � n×n denotes a symmetric positive semi-definite
state weighting (state penalty) matrix and R ∈ �m×m denotes a
symmetric positive definite control weighting (control penalty)
matrix. The control gain matrix K is given by Eq. (4).

K = R−1BT P (4)

where P is a unique symmetric positive semi-definite solution to
the algebraic Riccati equation shown in Eq. (5).

PA + AT P + Q − PBR−1BT P = 0 (5)

3. Related works

One of the most successful yet less applied techniques for opti-
mal  designing of LQR controllers is PSO. The superiority of PSO over
GA in finding optimal weighting matrices has been experimentally
shown in some studies [32,33]. In [34] PSO, GA and trial-and-error
methods are utilized to adjust LQR weighting matrices which is
applied to controlling an aircraft landing flare system. It is con-
cluded that LQR design based on PSO is more efficient and robust
compared to other methods. In [35] authors compared the per-
formance of the ordinary LQR, the LQR with prescribed degree of
stability (LQRPDS) and the PSO-based LQR in controlling distribu-
tion static compensator and showed that PSO-based design results
in best performance under different operating conditions.

In [36] a method is proposed to determine the weighting
matrices using PSO with pole region constraint for controlling a
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