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a b s t r a c t 

In this paper, we address the challenging task of simultaneously optimizing (i) the weights of a neural 

network, (ii) the number of neurons for each hidden layer, and (iii) the subset of active input features 

(i.e., feature selection). While these problems are traditionally dealt with separately, we propose an effi- 

cient regularized formulation enabling their simultaneous parallel execution, using standard optimization 

routines. Specifically, we extend the group Lasso penalty, originally proposed in the linear regression lit- 

erature, to impose group-level sparsity on the network’s connections, where each group is defined as the 

set of outgoing weights from a unit. Depending on the specific case, the weights can be related to an 

input variable, to a hidden neuron, or to a bias unit, thus performing simultaneously all the aforemen- 

tioned tasks in order to obtain a compact network. We carry out an extensive experimental evaluation, 

in comparison with classical weight decay and Lasso penalties, both on a toy dataset for handwritten 

digit recognition, and multiple realistic mid-scale classification benchmarks. Comparative results demon- 

strate the potential of our proposed sparse group Lasso penalty in producing extremely compact net- 

works, with a significantly lower number of input features, with a classification accuracy which is equal 

or only slightly inferior to standard regularization terms. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Recent growing interest in deep learning has made it feasible 

to train very deep (and large) neural networks, leading to remark- 

able accuracies in many high-dimensional problems including im- 

age recognition, video tagging, biomedical diagnosis, and others 

[1–4] . While even five hidden layers were considered challenging 

until very recently, today simple techniques such as the inclusion 

of interlayer connections [5] and dropout [6] allow to train net- 

works with hundreds (or thousands) of hidden layers, amounting 

to millions (or billions) of adaptable parameters. At the same time, 

it becomes extremely common to ‘overpower’ the network, by pro- 

viding it with more flexibility and complexity than strictly required 

by the data at hand. Arguments that favor simple models instead 

of complex models for describing a phenomenon are quite known 

in the machine learning literature [7] . However, this is actually 

far from being just a philosophical problem of ‘choosing the sim- 

plest model’. Having too many weights in a network can clearly 

increase the risk of overfitting; in addition, their exchange is the 

main bottleneck in most parallel implementations of gradient de- 
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scent, where agents must forward them to a centralized parameter 

server [8,9] ; and finally, the resulting models might not work on 

low-power or embedded devices due to excessive computational 

power needed for performing dense, large matrix-matrix multipli- 

cations [10] . 

In practice, current evidence points to the fact that the major- 

ity of weights in most deep networks are not necessary to its ac- 

curacy. As a representative example, Denil et al. [11] demonstrated 

that it is possible to learn only a small percentage of the weights, 

while the others can be predicted using a kernel-based estimator, 

resulting in most cases in a negligible drop in terms of classifica- 

tion accuracy. Similarly, in some cases it is possible to replace the 

original weight matrix with a low-rank approximation, and per- 

form gradient descent on the factor matrices [12] . Driven by these 

observations, recently the number of works trying to reduce the 

network’s weights has increased drastically (some of these works 

are reviewed more in depth in Section 5 ). Most of them either re- 

quire strong assumptions on the connectivity (e.g., the low-rank 

assumption), multiple training steps, e.g., [13] , or entirely separate 

optimization problems, e.g., [14] . 

When considering high-dimensional datasets, an additional 

problem is that of feature selection, where we search for a small 

subset of input features that brings most of the discriminative in- 

formation [15] . Feature selection and pruning are related problems: 

adding a new set of features to a task generally results in the need 
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of increasing the network’s capacity (in terms of number of neu- 

rons), all the way up to the last hidden layer. Similarly to before, 

there are countless techniques for feature selection (or, in alter- 

native, dimensionality reduction of the input vector via linear or 

nonlinear mappings), including principal component analysis, mu- 

tual information [16] , autoencoders, and many others. What we ob- 

tain, however, is a rather complex workflow of machine learning 

primitives: one algorithm to select features; an optimization crite- 

rion for training the network; and possibly another procedure to 

compress the weight matrices. This raises the following question, 

which is the main motivation for this paper: is there a principled 

way of performing all three tasks simultaneously , by minimizing a 

properly defined cost function? This is further motivated by the 

fact that, in a neural network, pruning a node and deleting an in- 

put feature are almost equivalent problems. In fact, it is customary 

to consider the input vector as an additional layer of the neural 

network, having no ingoing connections and having outgoing con- 

nections to the first hidden layer. In this sense, pruning a neuron 

from this initial layer can be considered the same as deleting the 

corresponding input feature. 

Currently, the only principled way to achieve this objective is 

the use of � 1 regularization, wherein we penalize the sum of ab- 

solute values of the weights during training. The � 1 norm acts as 

a convex proxy of the non-convex, non-differentiable � 0 norm [17] . 

Its use originated in the linear regression routine, where it is called 

the Lasso estimator, and it has been widely popularized recently 

thanks to the interest in compressive sensing [18,19] . Even if it has 

a non differentiable point in 0, in practice this rarely causes prob- 

lems to standard first-order optimizers. In fact, it is common to si- 

multaneously impose both weight-level sparsity with the � 1 norm, 

and weight minimization using the � 2 norm, resulting in the so- 

called ‘elastic net’ penalization [20] . Despite its popularity, how- 

ever, the � 1 norm is only an indirect way of solving the previously 

mentioned problems: a neuron can be removed if, and only if, all 

its ingoing or outgoing connections have been set to 0. In a sense, 

this is highly sub-optimal: between two equally sparse networks, 

we would prefer one which has a more structured level of sparsity, 

i.e., with a smaller number of neurons per layer. 

In this paper, we show how a simple modification of the Lasso 

penalty, called the ‘group Lasso’ penalty in the linear regression lit- 

erature [21,22] , can be used efficiently to this end. A group Lasso 

formulation can be used to impose sparsity on a group level, such 

that all the variables in a group are either simultaneously set to 

0, or none of them are. An additional variation, called the sparse 

group Lasso, can also be used to impose further sparsity on the 

non-sparse groups [23,24] . Here, we apply these ideas by consid- 

ering all the outgoing weights from a neuron as a single group. In 

this way, the optimization algorithm is able to remove entire neu- 

rons at a time. Depending on the specific neuron, we obtain dif- 

ferent effects, corresponding to what we discussed before: feature 

selection when removing an input neuron; pruning when remov- 

ing an internal neuron; and also bias selection when considering 

a bias unit (see next section). The idea of group � 1 regularization 

in machine learning is quite known when considering convex loss 

functions [25] , including multikernel [26] and multitask problems 

[27] . However, to the best of our knowledge, such a general for- 

mulation was never considered in the neural networks literature, 

except for very specific cases. For example, Zhao et al. [28] used a 

group sparse penalty to select groups of features co-occurring in a 

robotic control task. Similarly, Zhu et al. [29] have used a group 

sparse formulation to select informative groups of features in a 

multi-modal context. Liu et al. [30] apply a similar formulation to 

the specific case of convolutional networks. 

On the contrary, in this paper we employ the group Lasso for- 

mulation as a generic tool for enforcing compact networks with a 

lower subset of selected features. Our experimental results show 

that best results are obtained using the sparse group term, with 

comparable accuracy to � 2 -regularized and � 1 -regularized net- 

works, while simultaneously reducing, by a large margin, the num- 

ber of neurons in every layer. In addition, the regularizer can be 

readily implemented in most existing software libraries, and it 

does not increase the computational complexity with respect to 

the traditional weight decay technique. 

Outline of the paper 

The paper is organized as follows. Section 2 describes stan- 

dard techniques for regularizing a neural network during training, 

namely � 2 , � 1 and composite � 2 / � 1 terms. Section 3 describes our 

novel group Lasso and sparse group Lasso penalties, introducing 

the concept of groups in this context. Next, we evaluate our algo- 

rithms in Section 4 on a simple toy dataset of handwritten digits 

recognition, followed by multiple realistic experiments with stan- 

dard deep learning benchmarks. Section 5 presents a further re- 

view of related pruning techniques, followed by some concluding 

remarks and future work proposals in Section 6 . 

Notation 

In the rest of the paper, vectors are denoted by boldface low- 

ercase letters, e.g., a , while matrices are denoted by boldface up- 

percase letters, e.g., A . All vectors are assumed column vectors. The 

operator ‖·‖ p is the standard � p norm on an Euclidean space. For 

p = 2 this is the Euclidean norm, while for p = 1 we obtain the 

Manhattan (or taxicab) norm defined for a generic vector β ∈ R 

B 

as 
∥∥β

∥∥
1 

= 

∑ B 
k =1 | βk | . 

2. Weight-level regularization for neural networks: overview of 

conventional approaches 

Let us denote by y = f (x ; w ) a generic deep neural network, 

taking as input a vector x ∈ R 

d , and returning a vector y ∈ R 

o af- 

ter propagating it through H hidden layers. The vector w ∈ R 

Q is 

used as a shorthand for the column-vector concatenation of all 

adaptable parameters of the network. The generic k th hidden layer, 

1 ≤ k ≤ H + 1 , operates on a L k -dimensional input vector h k and 

returns an L k +1 -dimensional output vector h k +1 as: 

h k +1 = g k ( W k h k + b k ) , (1) 

where { W k , b k } are the adaptable parameters of the layer, while 

g k ( ·) is a properly chosen activation function to be applied 

element-wise. By convention we have h 1 = x . For training the 

weights of the network, consider a generic training set of N ex- 

amples given by { ( x 1 , d 1 ) , . . . , ( x N , d N ) } . The network is trained by 

minimizing a standard regularized cost function: 

w 

∗ = arg min 

w 

{ 

1 

N 

N ∑ 

i =1 

L (d i , f (x i ; w )) + λR (w ) 

} 

, (2) 

where L ( ·, ·) is a proper loss function, R ( ·) is used to impose regu- 

larization, and the scalar coefficient λ ∈ R 

+ weights the two terms. 

Standard choices for L ( ·, ·) are the squared error for regression 

problems, and the cross-entropy loss for classification problems 

[31] . 

By far the most common choice for regularizing the network, 

thus avoiding overfitting, is to impose a squared � 2 norm con- 

straint on the weights: 

R � 2 (w ) � ‖ 

w ‖ 

2 
2 . (3) 

In the neural networks’ literature, this is commonly denoted as 

‘weight decay’ [32] , since in a steepest descent approach, its net ef- 

fect is to reduce the weights by a factor proportional to their mag- 

nitude at every iteration. Sometimes it is also denoted as Tikhonov 

regularization. However, the only way to enforce sparsity with 
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