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a b s t r a c t 

Linking synaptic computation network is proposed. The linking synapse is introduced into the neural 

network inspired by the gamma band oscillations in visual cortical neurons, and the neural network is 

applied to image representation. The linking synaptic mechanism of the network allows integrating tem- 

poral and spatial information. An image is input to the network and the enhanced result is obtained by 

the final linking synaptic state. The visual performance of the results boosts the details while preserving 

the information in the input image. The effectiveness of the method has been borne out by five quanti- 

tative metrics as well as qualitative comparisons with other methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The gamma band oscillations in the primary visual cortex is dis- 

covered by Eckhorn et al. [1] and Gray et al. [2] independently, 

which is considered to be a significant progress in visual neuro- 

science [3–5] . After the discovery of the gamma band oscillations, 

Eckhorn et al. explain the synchronous activity of primate cortical 

neurons by a linking field model [6] , and it is simplified to pulse- 

coupled neural networks (PCNN) [7–9] . As PCNN is developed di- 

rectly from the studies of visual cortical properties, PCNN has be- 

come a general and powerful tool for image processing [9–11] . 

Based on the studies of the aforementioned models, we propose 

the linking synaptic computation network (LSCN) in this paper. As 

Eckhorn et al. introduce the crucial modulatory linking synapse 

which is inspired by the gamma band oscillations [6] , LSCN em- 

phasizes the linking synapse which has neurophysiological sup- 

port. Using individual spikes allows integrating temporal and spa- 

tial information in synaptic computation as well as real neurons 

do [12] . We use the temporal and spatial integration effect of the 

linking synapse for image enhancement. 

The aim of image enhancement is to improve the visual ap- 

pearance evaluated by human visual perception, and enhancement 

is useful when image contrast is imperceptible or barely percep- 

tible [13–15] . The most well-known image enhancement method 

is the classic histogram equalization because of its simplicity of 

implementation. The histogram based methods always produce 
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inadequate detail preservation or an excessively enhanced image 

[16–21] . The transform domain methods achieve enhancement by 

boosting the coefficients of high-frequency subbands or magnify- 

ing the measured contrast [22–24] . However, the parameters of 

these methods are not suitable to every general image and these 

methods also magnify the noisy intensity. The linear scale-space 

theory supports structure-preserving while suppressing noise [25] , 

and there are many improved structure-preserving smoothing 

techniques are proposed recently, such as bilateral filter [26] , 

weighted least squares filter [27] , L 0 -smoothing filter [28] , guided 

filter [29] , etc . If these structure-preserving filters are applied 

to image enhancement, they usually suffer from “halo” artifacts 

around the major structures [29–31] . The human visual system 

(HVS) is powerful in enhancing a scene with precise representation 

of contrast, and there are many image enhancement methods are 

inspired from HVS [32–34] . Spiking cortical model (SCM), a variant 

of PCNN, is applied to image enhancement and its processing 

mechanism is consistent with HVS [35,36] . Weber–Fechner’s law 

and the Mach band effect are simulated well in SCM method. 

However, the results of SCM enhancement algorithm suffer from 

contrast degradation in bright regions and some pixels with the 

lowest intensity change to white. 

We propose an image enhancement method based on mecha- 

nism of the linking synaptic computation. The goal of the image 

enhancement method is to improve visibility while preserving the 

information within the input image. Image details are enhanced by 

using the neural mechanisms related to the linking synapse. We 

conduct experiments to compare the proposed method with meth- 

ods based on histogram equalization [37] , SCM [35,36] , generalized 
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equalization model [21] , and gradient distribution specification 

[38] . The experiment results illustrate that the LSCN-based method 

is effective in image enhancement as well as in preserving the 

information of the input image. 

The contributions of this paper are summarized as follows: 

1. A neural network LSCN is designed. 

2. A general image enhancement framework is proposed. 

3. A network iterative stopping condition is proposed. 

4. We find that the final linking synaptic state is related with the 

stimulus image. 

2. Linking synaptic computation network 

2.1. Leaky integrator 

The dynamic potential v ( t ) of a neural oscillator is described via 

a leaky integrator, 

d v (t) 

d t 
= −a v (t) + s (1) 

where t is time, s is the input and a is the leak rate. 

The potential (1) can be discretized as, 

V (n ) − V (n − 1) 

n − (n − 1) 
= −aV (n − 1) + s (2) 

where V ( n ) is the discretized potential, and n is the discrete time. 

We can rewrite (2) as, 

V (n ) = bV (n − 1) + s (3) 

where b is the attenuation constant of the leaky integrator. 

2.2. LSCN 

The linking synapse, the membrane potential and the threshold 

are instantiated as leaky integrators. 

The postsynaptic potential feeds back to modulate the linking 

synapse. The linking synapse is represented by a leaky integrator 

[6–9] , 

L i j (n ) = lL i j (n − 1) + 

∑ 

pq 

W i jpq Y pq (n − 1) (4) 

where each neuron is denoted with indices ( i, j ), one of its neigh- 

boring neurons is denoted with ( p, q ), l is the linking constant, 

W ijpq is the weight applied to a linking synapse and Y pq (n − 1) is 

the postsynaptic action potential. 

Cortical networks have both feedback and feedforward com- 

ponents and the feedforward component integrates the stimulus- 

driven neuronal input [6,12,39] . The two components are combined 

together to produce the membrane potential. In this paper, the 

membrane potential is represented by a leaky integrator, 

U i j (n ) = fU i j (n − 1) + S i j (1 + βL i j (n )) (5) 

where f is the membrane potential attenuation constant, S ij carries 

the stimulus information and β is the linking strength. 

The threshold is an evolution from the neuron analog in [40] . 

The absolute and relative refractory period are simulated well by 

the threshold [40] . The threshold of a neuron is represented by a 

leaky integrator [6,40] . 

�i j (n ) = g�i j (n − 1) + hY i j (n − 1) (6) 

where g is the threshold attenuation constant, h is a magnitude 

adjustment, and Y i j (n − 1) is the postsynaptic action potential. 

At the beginning of the network iteration, the threshold decays 

from the initial value �ij (0) before the first spike occurs, 

�i j (n ) = g n �i j (0) . (7) 

Threshold can be replaced with a linear decay function [9] , 

�i j (n ) = �i j (n − 1) − δ + hY i j (n − 1) (8) 

where δ is a positive small constant. 

Similarly, the threshold decays from the initial value �ij (0) be- 

fore the first spike occurs, 

�i j (n ) = �i j (0) − nδ (9) 

When the membrane potential of a neuron exceeds its thresh- 

old in the network iteration, the neuron produces a spike, 

Y i j (n ) = 

{
1 , if U i j (n ) > �i j (n ) , 

0 , otherwise . 
(10) 

The linking synaptic computation network (LSCN) is described 

by (4), (5), (6) , and (10) . The schematic of LSCN is shown in Fig. 1 . 

LSCN retains two significant properties in the linking field net- 

work [6] . The first is that the linking synapse is represented by 

the leaky integrator [1,6] and the second is the dynamic thresh- 

old [6,40] . The two properties of LSCN are also the significant dif- 

ferences from the conventional integrate-and-fire model. LSCN has 

two differences from PCNN, the first is that the membrane poten- 

tial is represented by the leaky integrator, and the second is that 

the feeding input is simplified to the stimulus only. The modifi- 

cations are under the consideration that the membrane potential 

of the most biological neural networks is represented by the leaky 

integrator and the main contribution of feeding input is the stimu- 

lus [6] . The main difference from SCM is that LSCN represents the 

linking synapse as a leaky integrator. 

As the linking strength β is usually set to a small value [9–11] , 

we assume that it is set to 0 and obtain Fig. 2 based on (5) and (9) . 

The firing condition is that the membrane potential is larger than 

the decaying threshold. As can be seen from Fig. 2 , the spike tim- 

ing is when the membrane potential is almost equal to the thresh- 

old, 

�i j (n ) = U i j (n ) . (11) 

Once a neuron fires the first spike, in the next iteration of the 

network the threshold is changed to, 

�i j (n + 1) = gU i j (n ) + h, (12) 

then the threshold delays exponentially according to its attenua- 

tion constant g . The second and the following spikes produce when 

the threshold is almost equal to the membrane potential again, so 

the firing cycle C ij of a neuron is given by, 

C i j = log g 

(
U i j 

gU i j + h 

)
. (13) 

2.3. Multiple pass 

The proposed multiple pass working form of LSCN is a network 

stopping condition. The stopping condition is how to set the iter- 

ative times of the network. The iterative times is usually set man- 

ually [9–11] . Different from the conventional PCNN, the iterative 

process is automatic stop rather than manually set the iterative 

times in the proposed multiple pass form. 

The multiple pass stopping condition is that the network stops 

when all neurons in the network produce their spikes and it is 

given by Algorithm 1 . 

In Algorithm 1 , N is the total number of neurons in a network, 

firednum is counting the number of the fired neurons in each it- 

eration, Y c with initial values of 0 has the same size of Y , and 

the function ‘or’ performs an element-by-element ‘or’ operator be- 

tween matrices Y c and Y . 
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