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a b s t r a c t 

Neuro-fuzzy systems are known for their ability to both approximate and generalize presented data. In 

real life data sets not always all attributes (dimensions) of data are relevant or have the same impor- 

tance. Some of them may be noninformative or unnecessary. This is why subspace technique is applied. 

Unfortunately this technique is vulnerable to noise and outliers that are often present in real life data. The 

paper describes a subspace neuro-fuzzy system with data ordering technique. Data items are ordered and 

assigned with typicalities. Data items with low typicalities have lower influence on the elaborated fuzzy 

model. This technique makes fuzzy models more robust to noise and outliers. The paper is accompanied 

by numerical experiments on real life data sets. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Fuzzy systems use fuzzy logic to handle imprecise data. They 

can elaborate answers for the presented data. A crucial part of a 

fuzzy systems is a set of fuzzy rules (fuzzy rule base). Answers of 

fuzzy rules are aggregated into a final answer of a fuzzy system. In 

fuzzy systems rule base has to be provided by an expert. Neuro- 

fuzzy systems are an extension of fuzzy systems. They both use 

fuzzy logic. But neuro-fuzzy systems can elaborate automatically 

rules. They are able to create rules for the presented data. They 

can modify their parameters to minimise the error of the neuro- 

system. In this aspect neuro-fuzzy systems are similar to artificial 

neural networks. Many architectures differing in applied fuzzy sets, 

interpretation of fuzzy implications in rules, tuning techniques etc 

have been proposed and practically used. 

Creation of fuzzy rules in neuro-fuzzy systems with presented 

data is quite a complicated task. There are three essential meth- 

ods of automatic creation of rules: grid partition [1] , scatter parti- 

tion (clustering), and hierarchical partition [2–4] . Scatter partition 

is the most popular method of identification of fuzzy rules. Cluster- 

ing avoids the curse of dimensionality, which is the main problem 

of a grid partition. Many good clustering algorithms cannot deter- 

mine the best number of clusters. This number has to be passed as 

a parameter of these algorithms. This is their main disadvantage. 

In real life data sets not always all dimensions (attributes) are 

relevant or have the same importance. Some of them may be less 

important, noninformative, or even unnecessary. Global reduction 
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of dimensionality (e.g., PCA or SVD) may cause problem with in- 

terpretability of elaborated model. Local reduction of dimension- 

ality handles attributes in each data granule (cluster) individually. 

This is the idea of subspace clustering [5–7] . Subspace clustering 

algorithms can be divided into two classes: algorithms that elab- 

orate crisp subspaces or fuzzy subspaces. The algorithms of the 

former class select some attributes for each data granule [8–14] . 

The attributes are assigned weights either 0 or 1 (hard weights). 

The latter group of algorithms elaborate fuzzy (non binary) sub- 

space granules [6,15–17] . The attributes are assigned weights from 

interval [0, 1]. In some approaches the attributes are gathered in 

groups. The weights of attributes in groups are crisp (0 or 1), but 

the memberships of attributes to groups are fuzzy [18] . One of 

the problems of the soft weight clustering is its vulnerability to 

noise and outliers [18] . Main techniques for handling noisy data 

sets are: modification of clustering algorithm (e.g., applications of 

medians instead of mean (fuzzy C-medians clustering algorithm) 

as median is an estimator of average value more robust to out- 

liers and noise [19] ), modification of objective function in cluster- 

ing (e.g., possibilistic clustering [20] , possibilistic clustering with 

repulsion of clusters [21] , alternative c-means clustering [22] , pos- 

sibilistic clustering with weaker dependency on parameters [23] ), 

application of special metrics (e.g., L p norms and quasi-norms [24] , 

point-to-centroid distance functions [25] ); assignment of noise and 

outliers to a special noise cluster [26] ; evidential clustering with 

belief function [27] based on the Dempster–Shafer theory; data or- 

dering technique [28] . 

The problem of robustness to outliers and noise in neuro-fuzzy 

systems gave rise to new neuro-fuzzy systems. A robust neuro- 
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fuzzy system can be exemplified by a system with robust fuzzy 

regression agglomeration (RFRA) clustering and robust tuning pro- 

cedure [29] . This system incorporates a cost function of “the errors 

between the desired output and the output of the corresponding 

rule instead of the distance between input data to some proto- 

type of the considered cluster” [29] . In the clustering procedure the 

Tukey’s biweight function is used, in the tuning procedure – tanh - 

estimator loss function. The paper [30] describes the two-step 

identification of neuro-fuzzy model. In the first step the support 

vector regression (SVR) technique is used to detect a regression 

hyperplane robust to outliers. In the second step support vectors 

are used to initialize a neuro-fuzzy model. The paper [31] presents 

a learning method tolerant to imprecision and robust to outliers 

what improves the generalization ability of a neuro-fuzzy system. 

The method applies an ε-insensitive learning. Unfortunately these 

neuro-fuzzy systems do not apply the subspace paradigm. 

The algorithms based on ordering paradigm are robust to out- 

liers and even their high ratio does not distort the clustering re- 

sults severely [32,33] . The data items are ordered and their typ- 

icality is updated in each iteration of the clustering procedure. 

The distant items from all prototype centres have lower weights. 

Outliers and noise data items are assigned low typicality and do 

not distort the clustering process. The proposed system is based 

on subspace neuro-fuzzy system with logical implication of fuzzy 

rules [34] . In Section 2.1, we present an architecture of a subspace 

neuro-fuzzy system with logical interpretation of fuzzy rules and 

data ordering technique. Section 2.2 describes the creation of a 

fuzzy rule base with a fuzzy weighted ordered clustering algorithm 

and tuning of system’s parameters. Finally, Section 3 presents nu- 

merical experiments. 

2. Subspace neuro-fuzzy system 

Fuzzy inference system with parametrized consequences and 

weights attributes is an extension of the neuro-fuzzy system with 

parametrized consequences ANNBFIS [35] whose important feature 

is the logical interpretation of fuzzy implications (cf. Eq. (10) ). 

2.1. Architecture of system 

The system with parametrized consequences is a MISO system. 

Its rule base L contains fuzzy rules l in a form of fuzzy implications 

l : x is a � y is b , (1) 

where x = [ x 1 , x 2 , . . . , x D ] 
T is a vector of descriptors of a data item 

and y is a decision attribute for this data item. Both the descriptors 

and decision are real numbers. 

The text below describes the architecture of the system only for 

one rule in order to keep the notation simpler. 

The linguistic variable a in the rule premise is represented as a 

fuzzy set A in a D -dimensional space. In each dimension d the set 

A d is described with a Gaussian fuzzy set: 

u A d 
( x d ) = exp 

(
− ( x d − υd ) 

2 

2 s 2 
d 

)
, (2) 

where υd is the core location for the d th attribute and s d is the 

fuzziness of this attribute. The Gaussian membership function is 

differentiable in its whole domain what enables application of the 

gradient descent optimization procedure. The memberships of all 

attributes (descriptors) are aggregated in order to elaborate the 

membership u A of a data item to the premise of the rule. A 

T-norm is used as an aggregation operator. The attributes have 

their weights so the weighted T-norm is applied [36] : 
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where φ ∈ (0 , 1) ∪ (1 , + ∞ ) is a weighting exponent for attribute 

weights. If φ = 0 the mechanism of attribute weights is switched 

off. High values of φ result in maximal weight of one attribute 

in a rule, whereas all other attributes in the have minimal (zero) 

weight. 

The T-norm is implemented as a product: 

u A = T 

(
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, . . . , u A D 
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)
= 
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(
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))
. (4) 

If the formula (4) is applied, the membership of the data items to 

the rule tends to one independently whether the descriptors have 

high or low membership. The more attributes each data item has, 

the more intensely this phenomenon is expressed. Fortunately is 

can be avoided by an augmentation of weights [34] . The attribute 

weights for one data item are divided by the maximal values of 

them. The maximal value is always greater than zero. The aug- 

mented values are calculated with formula 

ˆ z cd ← 

z cd 

max i ∈ [1 , ... ,D ] z ci 

, (5) 

where ˆ z cd is an augmented weight of the d th attribute in the 

c th cluster. Thus instead of formula (4) we use the following for- 

mula: 

u A = 

D ∏ 

d=1 

(
1 − ˆ z 

φ
d 

(
1 − u A d 

))
. (6) 

From now on the rule index l will be used again. Thus u A becomes 

u lA . 

To avoid misunderstandings please keep in mind the meanings 

of the symbols: 

u A d stands for the membership of the d th descriptor to the 

fuzzy set A d in the premise for d th attribute of a certain rule 

(the index of which we omit here) as in formulae (2) –(4) , 

u lA stands for the membership of the whole data item to the 

premise of the l th rule. 

Combining (2) and (6) we get the value u lA of the premise of 

l th rule for data item x : 

u lA (x ) = 

D ∏ 
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φ
ld 
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ld 

]})
, (7) 

which is a real number: u lA ∈ (0 , 1] . 

The term b , in formula (1) , describing the l th rule’s consequence 

is represented by a normal isosceles triangle fuzzy set B l with the 

base width w l . The localization y l of the core of the triangle fuzzy 

set is determined by linear combination of input attribute values 

with attribute weights taken into account: 

y l = p 

T 
l · diag 
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. (8) 

The above formula (8) can also be written as 

y l = 

D ∑ 

d=1 

p ld z ld x d + p l0 = 

D ∑ 

d=0 

p ld z ld x d , (9) 

where z l0 = 1 and x 0 = 1 . 

The output u lB ′ of the l th rule is the fuzzy value of the fuzzy 

implication: 

u lB ′ ( x ) = u lA ( x ) � u lB ( x ) , (10) 
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