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a b s t r a c t 

This work devises a maximum-margin sparse coding algorithm, jointly considering reconstruction loss 

and hinge loss in the model. The sparse representation along with maximum-margin constraint is analo- 

gous to kernel trick and maximum-margin properties of support vector machine (SVM), giving a base for 

the proposed algorithm to perform well in classification tasks. The key idea behind the proposed method 

is to use labeled and unlabeled data to learn discriminative representations and model parameters simul- 

taneously, making it easier to classify data in the new space. We propose to use block coordinate descent 

to learn all the components of the proposed model and give detailed derivation for the update rules of 

the model variables. Theoretical analysis on the convergence of the proposed MMSC algorithm is pro- 

vided based on Zangwill’s global convergence theorem. Additionally, most previous research studies on 

dictionary learning suggest to use an overcomplete dictionary to improve classification performance, but 

it is computationally intensive when the dimension of the input data is huge. We conduct experiments 

on several real data sets, including Extended YaleB, AR face, and Caltech101 data sets. The experimental 

results indicate that the proposed algorithm outperforms other comparison algorithms without an over- 

complete dictionary, providing flexibility to deal with high-dimensional data sets. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The last decade has witnessed the great success of sparse cod- 

ing, which has become a widely used framework in machine learn- 

ing, signal processing, and neuroscience. The aim of sparse coding 

is to learn sets of overcomplete bases or dictionaries, namely the 

number of bases is greater than the dimensionality of the training 

examples [25] , such that one can present data as a linear combina- 

tion of the basis vectors. The advantage of over-complete bases is 

that these basis vectors are more likely to capture structures and 

patterns inherent in the input data. However, over-complete bases 

result in high-dimensional coding results when the dimension of 

the input data is huge, and dealing with high-dimensional datasets 

is always a challenging task in machine learning. 

Sparse coding can model inhibition between the bases by spar- 

sifying their activations, and the learned bases resemble the re- 

ceptive fields of neurons in the visual cortex [37] . One advan- 

tage of using sparse vectors is that sparse representation allows to 

compute similarities very fast [5] . Furthermore, learning the dic- 

tionary from the training examples has been shown to produce 
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state-of-the-art results compared to using off-the-shelf bases such 

as Fourier or wavelet bases. As a result, this work proposes to use 

sparse representation in the proposed model. 

Existing dictionary learning can generally be divided into two 

categories, unsupervised dictionary learning and supervised dictio- 

nary learning [16] . The unsupervised learning approaches do not 

consider labeled data in learning dictionary, and focus on minimiz- 

ing reconstruction errors with an � 1 regularization term to model 

data vectors as sparse linear combinations of basis elements. Un- 

like some other unsupervised learning techniques such as principal 

component analysis (PCA), sparse coding can be applied to learn- 

ing overcomplete basis and does not impose that the basis vectors 

to be orthogonal, allowing more flexibility to adapt the represen- 

tation to the data. It has been successfully applied to compressive 

sensing [38,55] , computer vision [33,52] and image classification 

[28,29,49] . Many unsupervised dictionary learning algorithms have 

been devised in the last decade [1,9,24] . Compared to unsupervised 

dictionary learnin, supervised dictionary learning uses labeled data 

to learn classification-oriented dictionary, and recent research in- 

dicates that dictionaries constructed via supervised learning yield 

better classification results [16,31,36,50] . Dictionary learning can be 

viewed as a matrix factorization with sparsity constraint problem, 

and non-negative has shown to be an important property of matrix 

factorization, since it tends to learn parts-based decomposition of 
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images [23] . Thus, several research studies [8,47] have considered 

to impose non-negative constraint into dictionary learning recently. 

Among supervised dictionary learning algorithms, some ap- 

proaches incorporate discriminative terms into the objective func- 

tion, such that the learning algorithms can learn a discrimina- 

tive dictionary. Zang and Li [62] devised a discriminative K-SVD 

method called D-KSVD, which incorporates classification loss into 

the objective function to simultaneously learn a linear classifier 

and dictionary. Jiang et al. [16] proposed a label consistent K- 

SVD algorithm called LC-KSVD to learn a discriminative dictio- 

nary for sparse coding. To learn a compact and discriminative 

dictionary for sparse coding, a new label consistent constraint 

called discriminative sparse-code error is additionally introduced 

for LC-KSVD. Furthermore, LC-KSVD integrates general reconstruc- 

tion error, classification error and discriminative sparse-code er- 

ror to form a unified objective function. As a result, LC-KSVD 

can be viewed as an extension of K-SVD algorithm [1] . Yang 

et al. [58] proposed to use Fisher discrimination criterion to si- 

multaneously learn class-specific sub-dictionaries and to make the 

coefficients more discriminative. Mairal et al. [32] proposed a 

generative/discriminative model for sparse signal representation 

and classification from learned dictionary and classification model. 

Intuitively, the feature representation that is compatible with 

the underlying classifier can greatly enhance the performance of 

a learning system, so we propose to learn the feature represen- 

tations and parameters of classifier simultaneously. Additionally, 

support vector machine (SVM) [46] is famous for its strong gener- 

alization guarantees derived from the maximum-margin property, 

inspiring us to consider maximum-margin in the model to pro- 

pose a maximum-margin sparse coding (MMSC) framework, which 

jointly considers reconstruction loss and hinge loss in the model. 

We optimize the proposed framework with block coordinate de- 

scent, in which the block variables include sparse coefficients, dic- 

tionaries, and classifier parameters. The proposed framework uses 

maximum-margin constraint to obtain theoretical generalization 

guarantee, and uses sparse coding to learn a discriminative feature 

presentation. Once the training phrase is completed, the represen- 

tations for training and testing data, dictionaries, and the parame- 

ters of the classifier are obtained. Then, classification of the testing 

data is achieved by using the obtained representations of testing 

data and the parameters of the classifier. 

The SVM has been widely recognized as a state-of-the-art clas- 

sification algorithm and has been applied to many practical ap- 

plications [6,19,27] . The role of sparse coding in the proposed 

framework resembles kernel trick used in SVM, which maps data 

points into a high-dimensional space to presumably make the sep- 

aration easier in that space. Therefore, using sparse coding and 

maximum-margin in the proposed framework resemble the two 

important properties of SVM, namely kernel trick and maximum- 

margin. The previous work that is related to the proposed frame- 

work is maximum-margin dictionary learning (MMDL) [26] , which 

considers the learning of bag of visual words (BOV) model and 

the training of classifier with maximum margin criteria simultane- 

ously. Several differences exist between the two frameworks. First, 

the proposed framework considers sparse coefficients, dictionar- 

ies and linear SVM parameter; while MMDL considers dictionar- 

ies and SVM parameter. Second, the proposed framework consid- 

ers dictionary and hinge loss when optimizing sparse coefficients; 

while MMDL only considers dictionary to find feature representa- 

tion. Finally, we use both labeled data and unlabeled data in the 

proposed framework to learn a discriminative and generalized dic- 

tionary; while MMDL only uses labeled data. We conduct experi- 

ments on several data sets, and the experimental results indicate 

that the proposed algorithm outperforms other algorithms. Besides 

the proposed framework and experiments, a proof of convergence 

is presented in the paper. 

The following notations are used throughout the paper. We de- 

note matrices by uppercase letters and vectors by bold-faced low- 

ercase letters. Given a n × K matrix D , the ( i, j ) entry of the ma- 

trix D is d ij , the i th row of D is ˜ d 

T 
i 

∈ R 

K , and the j th column of D 

is d j ∈ R 

n . The � 1 norm of α is ‖ α ‖ 1 = 

∑ 

i, j | αi j | . Finally, we in- 

troduce an indicator variable e j = [0 , 0 , . . . , 1 , . . . , 0] 
T 
, denoting the 

j th element is 1, and the other elements are 0. 

2. Maximum-margin sparse coding 

Feature learning transforms raw data into a representation that 

can be effectively exploited in a supervised learning task such 

as classification. Among the feature learning algorithms, dictio- 

nary learning has shown its success in applications such as image 

processing, audio processing, and document analysis. Given data 

points X = [ x 1 , . . . , x m 

] , where x i ∈ R 

n , the problem can be formu- 

lated as learning a dictionary D = [ d 1 , . . . , d K ] as listed in Eq. (1) , 

where d j ∈ R 

n and λ is a constant controlling the sparsity. The 

task is to minimize the reconstruction error, and uses � 1 regular- 

ization to enforce that the feature representation α = [ α1 , . . . , αm 

] 

is sparse. 

min 

D 

m ∑ 

i =1 

‖ x i − D αi ‖ 

2 
2 + λ ‖ αi ‖ 1 (1) 

Once the dictionary learning process is completed, one can use 

the dictionary D to transform each data point into a sparse repre- 

sentation α, namely sparse linear combinations of basis elements. 

In image classification task, one can use SVM with sparse repre- 

sentation α along with their corresponding labels to train a clas- 

sification model, and has recently led to state-of-the-art results. In 

other words, the above approaches includes two phases. The first 

phase is an unsupervised feature learning phase, using available 

examples to learn a code book D . The second phase is a super- 

vised learning phase to learn model parameters with new feature 

representations. 

2.1. Problem definition of supervised sparse coding 

In supervised sparse coding for classification task, the labeled 

data and the underlying classifier are both considered in the ob- 

jective function. The goal is to impose additional constraints on 

dictionary learning such that the learned feature representation 

can improve the underlying classifier. Given a training data set 

(x 1 , y 1 ) , . . . , (x m 

, y m 

) , where x i ∈ R 

n and y i ∈ { 1 , . . . , p} , the goal 

is to learn a feature representation αi ∈ R 

K , such that the clas- 

sification can benefit from the new representation. For the data 

x i belonging to t th class, we use one-against-all scheme to repre- 

sent the label vector, namely, y i = [ −1 , . . . , −1 , 1 , −1 , . . . , −1] T , de- 

noting the t th element is 1, and the other elements are −1 . We 

formulate the supervised sparse coding as a joint problem of re- 

construction loss L r and classification loss L c as listed in Eq. (2) , 

where Y = [ y 1 , . . . , y m 

] represents labels and W = [ w 1 , . . . , w p ] de- 

notes classifier parameter. 

min L r (X , D , α) + L c (α, Y , W ) (2) 

Several previous research studies have used the supervised 

sparse coding framework listed in Eq. (2) to devise algorithms. 

For example, the supervised dictionary learning [32] uses logis- 

tic loss to denote L c , and LC-KSVD uses a linear classifier in L c . 

The NMFSVM algorithm proposed by Gupta and Xiao [13] uses the 

above framework to identify the decomposition and classification 

parameters. The idea behind NMFSVM is to combine non-negative 

matrix factorization (NMF) objective with SVM, but several dif- 

ferences exist between the proposed method and NMFSVM. First, 

NMF in NMFSVM is related to matrix decomposition, while matrix 
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