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a b s t r a c t 

Gaussian process (GP) is a popular non-parametric model for Bayesian inference. However, the perfor- 

mance of GP is often limited in temporal applications, where the input–output pairs are sequentially- 

ordered, and often exhibit time-varying non-stationarity and heteroscedasticity. In this work, we propose 

two particle-based GP approaches to capture these distinct temporal characteristics. Firstly, we make use 

of GP to design two novel state space models which take the temporal order of input–output pairs into 

account. Secondly, we develop two sequential-Monte-Carlo-inspired particle mechanisms to learn the la- 

tent function values and model parameters in a recursive Bayesian framework. Since the model parame- 

ters are time-varying, our approaches can model non-stationarity and heteroscedasticity of temporal data. 

Finally, we evaluate our proposed approaches on a number of challenging time-varying data sets to show 

effectiveness. By comparing with several related GP approaches, we show that our particle-based GP ap- 

proaches can efficiently and accurately capture temporal characteristics in time-varying applications. 

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

Gaussian process (GP) is a popular Bayesian nonparametric 

model due to its elegant inference framework [1] . However, the 

performance of GP is often limited in temporal applications [2–4] , 

mainly because of two following reasons. First , GP is a batch mod- 

eling approach which may be not efficient to make online predic- 

tion for the sequentially-ordered temporal data sets [2,4] . Second , 

it is difficult for GP to capture distinct characteristics such as non- 

stationarity and heteroscedasticity which often exist in the tempo- 

ral applications [1,5] . 

To model temporal input–output data pairs sequentially, sev- 

eral online variants of GP have been investigated by designing au- 

toregressive models [6] ; local online GP approaches [2,7] ; Bayesian 

online learning with sparsification [4,8–10] ; GP-based state space 

models [11–14] with different Bayesian approximation techniques 

such as Kalman filter [15,16] , assumed density filter [17] , Monte 

Carlo sampling [18–20] . However, the model parameters in these 

GP approaches are often assumed to be time-invariant. As a result, 

it may be restricted for these approaches to model time-varying 

non-stationarity and heteroscedasticity. 
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In general, non-stationarity refers to the input-dependent 

smoothness, where the correlation between any two latent func- 

tion values does not only depend on the similarity between two 

corresponding input vectors, but it is also related to these two in- 

put vectors themselves [1] . Additionally, heteroscedasticity refers 

to the input-dependent noise, where the output noise is changed 

along with the location of the corresponding input vector [1] . To 

capture these distinct data characteristics, a number of GP ex- 

tensions have been investigated by designing non-stationary co- 

variance functions in GP [1,21,22] , adding another GP on the out- 

put noise [22–25] , warping GP with different nonlinear functions 

[26–29] , developing mixtures of GP experts [30–32] . However, 

these batch GP approaches are often inefficient to make online pre- 

diction for time-varying applications. 

To address the difficulties above, we propose two novel particle- 

based GP approaches in this paper, where one can make online 

prediction as well as model time-varying non-stationarity and het- 

eroscedasticity in two efficient and accurate recursive Bayesian 

frameworks. Firstly , we take advantage of GP to develop two novel 

state space models (SSMs) in which the sequential order of tem- 

poral data pairs is modeled to make efficient online prediction. 

Furthermore , the parameters in our two SSMs are time-varying 

to capture non-stationarity and heteroscedasticity in the tempo- 

ral data sets. Note that, the differences between our two SSMs are 

the different time-varying assumptions of these model parameters. 

This mainly accounts the trade-off between efficiency and accuracy 
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when performing online inference. Finally , based on our two time- 

varying SSMs, we respectively design two effective particle mech- 

anisms to infer the latent function values and model parameters 

over time, in order to learn the distinct temporal characteristics in 

time-varying applications. 

On one hand, our approaches are different from those online GP 

variants, since our approaches can model non-stationarity and het- 

eroscedasticity in the temporal applications. This is mainly because 

we learn the model parameters over time. On the other hand, our 

approaches are different from those non-stationary/heteroscedastic 

GP variants, since our approaches can make efficient online pre- 

diction for temporal data sets. This is mainly credited to our novel 

GP-constructed SSMs with effective particle inference mechanisms. 

The rest of this paper is organized as follows. In Section 2 , we 

review the basics of GP. In Section 3 , we introduce our particle- 

based GP approaches in detail. In Section 4 , we evaluate our pro- 

posed approaches on five challenging time-varying applications, by 

comparing them with several relevant GP approaches. Finally, we 

conclude our paper in Section 5 . 

2. Background 

In this section, we first introduce the definition of Gaussian pro- 

cess (GP). Then we review the standard GP regression approach. 

Finally, we briefly discuss a conventional way to model temporal 

data with GP regression. 

2.1. Definition of Gaussian process 

Gaussian process (GP) is a collection of random variables, any 

finite number of which have a joint Gaussian distribution [1] . It 

has been widely used as a Bayesian prior over the latent func- 

tion, where the function values at any finite number of inputs are 

Gaussian-distributed random variables [1,33–35] . Specifically, a GP 

prior over the latent function f ( x ) is denoted by 

f (x ) ∼ GP (m (x ) , k (x , x 

′ )) , (1) 

with a mean function m ( x ) and a covariance function k ( x, x ′ ) [1] , 

m (x ) = E[ f (x )] , (2) 

k (x , x 

′ ) = E[( f (x ) − m (x ))( f (x 

′ ) − m (x 

′ ))] , (3) 

where x , x ′ ∈ R 

d x are any two d x -dimension input vectors. 

According to the definition of GP, one can obtain that the prior 

over the latent function values f (X ) = [ f (x 1 ) , . . . , f ( x T )] 
T at any T 

input vectors X = [ x 1 , . . . , x T ] 
T is a jointly Gaussian distribution, 

i.e., 

p( f (X )) = N (m (X ) , K(X, X )) , (4) 

where the mean vector m ( X ) is computed from the mean function 

m ( x ), 

m (X ) = 

[ 

m (x 1 ) 
· · ·

m (x T ) 

] 

, (5) 

and the covariance matrix K ( X, X ) is computed from the covariance 

function k ( x, x ′ ), 

K(X, X ) = 

[ 

k (x 1 , x 1 ) · · · k (x 1 , x T ) 
· · · · · · · · ·

k (x T , x 1 ) · · · k (x T , x T ) 

] 

. (6) 

In this work, we follow [1,36] to choose a widely-used GP prior, 

f (x ) ∼ GP (m (x ) = 0 , k (x , x 

′ )) , (7) 

where the mean function is zero for simplicity. 1 Furthermore, the 

covariance function is a popular squared exponential (SE) kernel 

[1,36] , i.e., 

k (x , x 

′ ) = σ 2 
f e 

−0 . 5(x −x ′ ) T L −1 (x −x ′ ) = σ 2 
f k � (x , x 

′ ) , (8) 

where σ 2 
f 

is the amplitude parameter, k � (x , x ′ ) = 

e −0 . 5(x −x ′ ) T L −1 (x −x ′ ) is the unscaled covariance function in which L 

is diagonal with the length-scale parameter vector � = [ l 1 , . . . , l d x ] 
T . 

In the following, we illustrate how to use GP to address the stan- 

dard nonlinear regression task from a Bayesian view. 

2.2. Gaussian process regression 

Suppose that there is a training set D = (X, y ) = { (x t , y t ) } T t=1 

with T input–output data pairs, where x t ∈ R 

d x , y t ∈ R , X = 

[ x 1 , . . . , x T ] 
T , y = [ y 1 , . . . , y T ] 

T . Each output is assumed to be gen- 

erated from 

y = f (x ) + εy , (9) 

where the Gaussian noise is εy ∼ N (0 , σ 2 
y ) with variance σ 2 

y . Fur- 

thermore, the GP prior over the latent function is assumed to be 

f (x ) ∼ GP (0 , k (x , x ′ )) with the SE covariance function k (x , x ′ ) = 

σ 2 
f 

k � (x , x ′ ) in Eq. (8) . For convenience, we collect the parameters 

of the SE covariance function ( σ 2 
f 
, � ) and the noise variance σ 2 

y 

into a parameter vector � = [ σ 2 
f 
, �, σ 2 

y ] 
T . 

Given the training set D = (X, y ) and M test inputs X � = 

[ x 1 � , . . . , x 
M 

� ] 
T , the regression task can be addressed by using GP 

in the following Bayesian manner. Specifically, predicting the test 

output vector y � and the model parameters � can be interpreted 

to learn the predictive distribution over y � and �, 

p(y � , �| X � , X, y ) = p(y � | X � , X , y , �) p(�| X , y ) . (10) 

Parameter learning by p ( �| X , y ): As p ( �| X , y ) ∝ p ( y | X, �), a pop- 

ular approach to infer � is to minimize the negative log likelihood 

with gradient optimization [1] 

− log p(y | X, �) 

= 

1 

2 

y T [ K(X, X ) + σ 2 
y I] 

−1 y + 

1 

2 

log | K(X, X ) + σ 2 
y I| + 

n 

2 

log 2 π, 

(11) 

where K ( X, X ) is constructed by using Eq. (6) . In practice, this ap- 

proach works well [1] and thus we apply it for the standard GP 

regression in this paper. 

Output inference by p ( y � | X � , X , y , �): After � is learned, one 

can make prediction at test inputs X � by using p ( y � | X � , X , y , 

�). Firstly , due to the fact that f (x ) ∼ GP (0 , k (x , x ′ )) and the 

noise in Eq. (9) is Gaussian, the joint distribution over the train- 

ing outputs y and latent function values at test inputs f (X � ) = 

[ f (x 1 � ) , . . . , f (x M 

� )] T is Gaussian [1] , 

p(y , f (X � ) | X, X � , �) = N 

(
0 , 

[
K(X, X ) + σ 2 

y I K(X, X � ) 
K(X � , X ) K(X � , X � ) 

])
, (12) 

where K ( X � , X ) and K ( X � , X � ) are constructed by using X � and X in 

Eq. (6) . Secondly , based on the conditional property of a joint mul- 

tivariate Gaussian distribution (Appendix A of [1] ), one can obtain 

that the conditional distribution p ( f ( X � )| X � , X , y , �) is Gaussian, 

p( f (X � ) | X � , X, y , �) = N (μ� , �� ) , (13) 

with the following mean vector μ� and covariance matrix �� 

which are computed from the corresponding joint distribution p ( y , 

f ( X � )| X, X � , �) in Eq. (12) [1] , 

μ� = K (X � , X )[ K (X, X ) + σ 2 
y I] 

−1 y , (14) 

1 Note that it is straightforward to choose other mean functions to do mathemat- 

ical derivations without difficulties. 
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