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a  b  s  t  r  a  c  t

In cluster  analysis,  a fundamental  problem  is  to  determine  the  best  estimate  of  the  number  of  clusters;
this  is known  as  the  automatic  clustering  problem.  Because  of lack  of prior  domain  knowledge,  it  is  dif-
ficult to choose  an  appropriate  number  of clusters,  especially  when  the  data  have  many  dimensions,
when  clusters  differ  widely  in  shape,  size,  and  density,  and  when  overlapping  exists  among  groups.  In
the  late  1990s,  the  automatic  clustering  problem  gave  rise  to a new  era  in  cluster  analysis  with  the
application  of  nature-inspired  metaheuristics.  Since  then,  researchers  have  developed  several  new  algo-
rithms in this  field.  This  paper  presents  an  up-to-date  review  of  all  major  nature-inspired  metaheuristic
algorithms  used  thus  far for  automatic  clustering.  Also,  the  main  components  involved  during  the  for-
mulation  of metaheuristics  for automatic  clustering  are  presented,  such  as encoding  schemes,  validity
indices,  and  proximity  measures.  A  total  of 65 automatic  clustering  approaches  are  reviewed,  which
are  based  on  single-solution,  single-objective,  and  multiobjective  metaheuristics,  whose  usage  percent-
ages  are  3%,  69%,  and  28%,  respectively.  Single-objective  clustering  algorithms  are  adequate  to efficiently
group  linearly  separable  clusters.  However,  a strong  tendency  in  using  multiobjective  algorithms  is  found
nowadays  to address  non-linearly  separable  problems.  Finally,  a  discussion  and  some  emerging  research
directions  are  presented.

©  2016  Published  by  Elsevier  B.V.

1. Introduction

Cluster analysis is an unsupervised learning technique aimed at discovering the
natural grouping of objects according to the similarity of measured intrinsic charac-
teristics [1]. The two fundamental problems in automatic clustering are determining
the  optimal number of clusters and identifying all data groups correctly. In this sense,
the  number of combinations in assigning N objects into K clusters is1:

S(N, K) = 1
K!

K∑
i=0

(−1)K−i

(
K

i

)
iN . (1)

On  the other hand, the search space size in finding the optimal number of clusters
is2:

B(N) =
N∑

K=1

S(N, K). (2)

Besides, the clustering (or grouping) problem of finding an optimal solution is
NP-hard when K > 3 [2]; hence, even for moderate-sized problems, the clustering
task could be computationally prohibitive [3].
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1 S(N, K) is known as the Stirling numbers of the second kind.
2 B(N) is known as the Bell numbers.

To limit the search space size, many clustering methods described in the litera-
ture assume a fixed number of clusters, which is unknown a priori in many clustering
practices. To overcome this inconvenience, automatic clustering approaches aimed
at finding the adequate number of clusters within the range [Kmin, Kmax] have been
developed.

The principal clustering techniques developed in the last 50 years were reviewed
by Jain [4], who  presented the evolution and trends in data clustering. Also, Xu and
Wunsch [5] focused on algorithms for grouping data sets that are used in statis-
tics, computer science, and machine learning. In the last decade, developments in
automatic clustering have been strengthened [6–8]. In particular, nature-inspired
metaheuristics have been applied to obtain satisfactory suboptimal solutions to
the automatic clustering problem in an acceptable timescale [9]. These kinds of
metaheuristics model the behavior of natural phenomena, which exhibit an abil-
ity  to learn or adapt to new situations to solve problems in complex and changing
environments [10].

Some review articles on clustering analysis that use nature-inspired meta-
heuristics have been published by Handl and Meyer [11], Sheikh et al. [12],
Hruschka et al. [9], Rana et al. [13], Bong and Rajeswari [6], Nanda and
Panda [14], and Alam et al. [15]. A review of ant-based and swarm-based
clustering techniques was presented by Handl and Meyer [11]. A survey on
genetic algorithms applied to clustering was summarized by Sheikh et al.
[12]. Hruschka et al. [9] presented a brief summary of evolutionary algo-
rithms and reviewed the initialization procedure, encoding scheme, crossover,
mutation, and fitness evaluation for single and multiobjective cases. Bong and
Rajeswari [6] investigated multiobjective nature-inspired clustering techniques
applied to image segmentation. Recently, Nanda and Panda [14] surveyed some
nature-inspired metaheuristics focused on the partitional clustering paradigm.
Reviews on particle swarm optimization algorithms and their applications
to  data clustering were presented by Rana et al. [13] and Alam et al.
[15].
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Despite the relevance of these review articles, to the best of our knowledge,
no review paper about nature-inspired metaheuristics for automatic clustering
has  been published. Therefore, we  present an in-depth review of nature-inspired
metaheuristics for automatic clustering that have been reported in the last two
decades. This paper contributes in the following two main aspects: (i) it presents an
up-to-date overview on single-solution, single-objective, and multiobjective meta-
heuristics applied to automatic clustering, and (ii) it provides a review of important
aspects, such as encoding schemes, validity indices, data sets, and applications.

The  outline of this paper is as follows. Section 2 describes the basic terms and
concepts related to automatic clustering analysis. Section 3 presents single-solution
metaheuristics that use a single agent or solution, which moves through the search
space in a piecewise style. Section 4 reviews single-objective metaheuristics, in
which a population of potential solutions cooperate to optimize a unique cost func-
tion.  Section 5 presents multiobjective metaheuristics, which optimize distinct cost
functions and consider a trade-off among them. Section 6 discusses relevant auto-
matic clustering algorithms useful for solving specific data sets and applications.
Finally, future tendencies and conclusions are given in Sections 7 and 8, respectively.

2. Basic preliminaries

2.1. Definitions

The following terms and notation are used throughout this
paper:

• A pattern (or object) is a single data item represented by a vector
of measurements x = {x1, x2, . . .,  xD}T, where xi ∈ R  is a feature (or
attribute), and D denotes the dimensionality.

• A data set is denoted as X = {x1, x2, . . .,  xN} ∈ R
D, where N is the

total number of patterns in the data set.
• A cluster (or group) can be defined as high-density regions sepa-

rated by low-density regions within the feature space.
• Clustering, denoted as C = {ck|k = 1, . . .,  K}, refers to the set of

mutually disjoint clusters that partitions X into K groups.
• The number of objects in cluster ck is denoted by nk = |ck|.
• The centroid of cluster (or prototype) ck is expressed as c̄k =

1/nk

∑
xi ∈ ck

xi, whereas the centroid of data set X is X̄ =
1/N
∑

xi ∈ Xxi.
• A distance measure is a metric (or quasi-metric) used to quantify

the proximity between patterns.
• A cluster validity index uses a distance measure to quantitatively

evaluate the obtained clustering.

2.2. Clustering techniques

The specialized literature on cluster analysis commonly classi-
fies clustering techniques into partitional and hierarchical [1,4,14],
which are detailed in the following subsections.

2.2.1. Partitional clustering
Partitional clustering can be performed in two  different modes:

hard (or crisp) and fuzzy. Hard clustering assumes that the mem-
bership between patterns and clusters is binary; thus, each pattern
belongs to exactly one cluster. On the other hand, fuzzy clustering
assigns different degrees of membership to the patterns for each
cluster to build a non-binary relationship between them.

Hard clustering divides a data set directly into a prespecified
number of clusters without a hierarchical structure [16], where a
data set X is partitioned into K nonoverlapping groups C = {c1, c2,
. . .,  cK}, such that the following three conditions should be satisfied:

• ci /= ∅, i = 1, . . .,  K;
• ⋃K

i=1ci = X;
• ci∩ cj = ∅, i, j = 1 . . . , K and i /= j.

Perhaps the most fundamental algorithm related to hard clus-
tering is the k-means algorithm, which attempts to minimize the

sum-of-squared-error criterion [17,18]. Fifty years after its for-
mulation, k-means is still popular and widely used because of
its simplicity and low computational complexity [4]. However,
a predefined number of clusters is required at the beginning of
the algorithm, which is unknown in several real-world clustering
applications. Hence, the k-means algorithm has been extended to
automatically find the number of clusters; some of these extended
approaches include the X-means [19] and the G-means algorithm
[20].

Fuzzy clustering is an alternative definition given in terms of
fuzzy sets, in which each pattern belongs to more than one cluster
simultaneously, with a certain degree of membership uj ∈ [0, 1].
The membership value of the ith pattern in the jth cluster should
satisfy the following two conditions:

• ∑K
j=1uj(xi) = 1, i = 1, . . .,  N;

• ∑N
i=1uj(xi) < N, j = 1, . . .,  K.

The most well-known fuzzy algorithm is fuzzy c-means [21],
which is essentially a fuzzy extension of the k-means method.

2.2.2. Hierarchical clustering
Hierarchical clustering algorithms produce a hierarchy of clus-

tering called a dendrogram (or tree structure), which represents the
nested grouping of the objects in a data set. The procedure builds N
successive clustering levels, in which the current clustering is based
on the solution obtained at the previous level. Therefore, hierarchi-
cal clustering does not require a priori knowledge about the number
of clusters; however, the obtained groups are static because the
objects assigned to a given cluster cannot move to another one.

Agglomerative and divisive approaches are the two main
categories of hierarchical clustering, of which single-link and
complete-link [4] algorithms are the most well-known.

2.3. Proximity measures

Clustering algorithms measure the proximity between objects
to form groups [1]. The selection of the appropriate proximity mea-
sure is important because memberships are defined for every object
in data set X. Depending on the kind of proximity measure, different
groupings can be created [22]. A proximity measure can be either
a distance (dissimilarity) or a similarity between a pair of objects,
between an object and a prototype, or between a pair of proto-
types. The most common proximity measures used in the automatic
clustering techniques described herein are detailed below.

• The Minkowski metric [16], or Lp-norm, is a dissimilarity measure
defined as

dp(x, y) =
(

D∑
i=1

|xi − yi|p
)1/p

, (3)

where x and y are D-dimensional data vectors. Note that when
p = 2, the Minkowski metric becomes the well-known Euclidean
distance (or L2-norm), which is denoted as de(x, y). Two  other
common special cases of the Minkowski metric are the Manhat-
tan distance (or L1-norm), when p = 1, and the Chebyshev distance
(or L∞-norm), when p → ∞,  which is computed as

d∞(x, y) = max
1≤i≤D

|xi − yi|. (4)

• The similarity between two  vectors x and y can be measured by
the cosine of the angle between them:

cos(x, y) = xT y
‖x‖‖y‖ , (5)
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