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A B S T R A C T

In this paper we present a Complex-Valued Recurrent Neural Network (CVRNN), trained with a recursive
Levenberg-Marquardt (LM) learning algorithm in the complex domain, applying it to the problem of dynamic
system identification, and to an adaptive neural control scheme of a nonlinear oscillatory plant. This
methodology is applied to two different CVRNN topologies with different kinds of activation functions.
Furthermore, we applied the CVRNN identification and control for a particular case of a nonlinear, oscillatory
mechanical plant to validate the performance of the adaptive neural controller using the LM algorithm
developed throughout this work, compared to a complex-valued Backpropagation learning algorithm. The
obtained comparative simulation results using a flexible robot arm gives a good performance of the derived
control schemes. The results show some priority of the recursive LM learning over the BP learning, and the use
of constructed activation functions in the neural network topology.

1. Introduction

The fast growth of available computational resources has led to the
developments of a wide number of Neural Networks (NN) based
modeling, identification, prediction and control applications [1]. The
main NN property, namely the ability to approximate complex non-
linear relationships without prior knowledge of the model structure
makes them a very attractive alternative to the classical modeling and
control techniques [2–4]. In the last decade there has been a rise in
applications using Complex-Valued RecurrentNNs (CVRNN). Most of
them deal with oscillatory systems which, by their physical nature, are
convenient to be treated in the complex domain, such as electromag-
netic waves, light waves, images processing, electric power systems,
evaporator systems and mechanical systems [5,6].

Recently there has been applications of these complex-valued
networks in the solution of math problems: in [7] the authors use a
specific type of RNN to solve the Sylvester equation, a problem that
commonly arises in control theory; in [8,9], different complex-valued
NN topologies are used to solve the time-varying complex generalized
inverse matrix problem, showing that the use of complex-valued NN
yield better performance than its real-valued counterpart.

Also there is a vast use ofNN in control applications. To name a few
examples: in [10] the authors use NN in two adaptive systems for the
control of micro-aerial vehicles with nonlinear dynamics; and in [11],
another adaptive controller is proposed for controlling mobile robots in

the presence of external disturbances using NN, yielding good results.
In [12], the authors derived a Complex-Valued Backpropagation

(CVBP) algorithm used for pattern classification. However, the learn-
ing algorithm presented some problems because the activation func-
tions have singularity points in their domains. Some other works
[12,13], propose different activation functions that avoid singularity
points. To simplify the Backpropagation (BP) and the Levenberg-
Marquardt (LM), learning for the CVRNN, the present work uses the
aid of diagrammatic rules (see [14,15]) to construct an adjoint network
and propagate the complex output error through it in order to obtain
the weight adjustment, with two different CVRNN topologies con-
sidered, each with different kinds of activation functions, to avoid
singularities. The optimization based BP and LM learning techniques
are used for nonlinear oscillatory plant identification and tracking error
suppression by means of a direct integral term (I-term) adaptive neural
control using CVRNN. Lastly, some comparative simulation results of
CVRNN identification and control of the flexible-joint of a robot are
given and discussed, and a validation stage is presented in order to
confirm the good performance of the control scheme using the
proposed learning algorithms.

Although good performance of this kind of CVRNN topology has
been achieved previously using BP (see [16]), the importance of this
kind of neural adaptive controllers in real-time practical applications
motivates us in the development of algorithms that drive the CVRNN
behavior to the desired plant behavior in a much faster way, such that
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the training stage does not affect the global performance of the control
system.

This work contributes a training algorithm that resembles the
second order Newton optimization algorithm, with a faster behavior
than a first order algorithm, but without the high computational cost or
singularity problems computing the inverse Hessian matrix that it
often presents. We apply this algorithm to the proposed NN with
complex-valued synaptic weights, and then it is compared to the BP
algorithm developed in previous works [16].

The CVRNN is presented as a dynamical system with a canonical
Jordan form. While the use of real-valued synaptic weights yields a
sum of purely exponential terms at the CVRNN's output, the use of
complex numbers adds oscillatory terms to the CVRNN's output,
expanding the kind of behaviors it can approximate. This is why a
CVRNN with complex-valued parameters is preferred over the
CVRNN with double number of real-valued parameters.

2. Topology, BP and LM learning of CVRNN

The general CVRNN topology in consideration is an extension of
the Real-Valued Recurrent Neural Network topology, given in [4]. The
considered CVRNN topology has real-valued input U k( ) and output
Y k( ) signals, complex-valued internal state X k( ) and hidden state Z k( )
vectors, and complex-valued J B C, , weight matrices, defined as
follows:

X k JX k BU k1( + )= ( )+ ( ) (1)

J J J i Ndiag 1 1= ( ), < , = ,…,i i (2)

E k Y k Y k( )= ( )− ( )P (3)

Z k X kΓ( )= [ ( )] (4)

V k CZ k( )= ( ) (5)

Y k V kΦ( )= [ ( )] (6)

The vectors and matrices dimensions of the CVRNN topology are
given by: J ∈ n n× the feedback weight matrix, B ∈ n m× the input
weight matrix, C ∈ L n× the output weight matrix, X Z, ∈ n, U ∈ m

and Y ∈ L; Γ[⋅] is a complex-valued activation function, and Φ[⋅] is a
real-valued activation function; n m L, , are the number of internal
states, inputs and outputs respectively.

The inequality in (2) is a local stability preserving condition,
imposed on the diagonal blocks of the matrix J . The performance
index to be minimized is given by:

∑ ∑ζ k E k ζ
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2
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j

j
e k

2

(7)

The instantaneous Means Squared Error (MSE) ζ k( ) is used in
real-time implementations, while the total MSEζ is used for one epoch
Ne for off-line implementations. Given that (7) is a real-valued function
which has to be minimized in regard to complex-valued weight
parameters, the optimality conditions are given in terms of the
Wirtinger calculus [17].

We consider two particular CVRNN with different activation
functions. As in the real-valued case [4], we apply complex-valued
diagrammatic rules to derive an adjoint network and weight update
terms for each case.

2.1. Topology, BP and LM learning of CVRNN with first type
activation function

The first type activation function, which is used for Γ[⋅], Φ[⋅] is
defined as follows:

 f z z z zz p πi p( )=tanh( ), ∈ ∖ =0 ± 2 −1
2

, ∀ ∈
⎧⎨⎩

⎫⎬⎭ (8)

This activation function has singularities at periodic points of the
complex plane; we avoid them by capping the image of the function to a
threshold, in a neighborhood around these points, of radius ε > 0. The
topology of CVRNN using this activation function is given on Fig. 1.

The application of the diagrammatic rules given in [15] consists in
reversing the signal flow of every branch, interchanging inputs with
outputs, delay operators with forward operators, sum points with
junctions, vectors with their transpose, and activation functions with
their derivatives. For the CVRNN topology, given on Fig. 1, the adjoint
CVRNN topology is given by Fig. 2, where the gradient terms can be
easily derived.

The general complex-valued BP (CVBP) learning algorithm (see
[16]) with a momentum term is given by the following update equation:

W k W k η W k α W k W W( +1)= ( )+ Δ ( )+ Δ ( −1) <j 0 (9)

Where:W is a general weight matrix (J B C, , ); WΔ is the weight update
term of W given by the gradient term of the output with respect to each
one of the weight vectors; η > 0 is a diagonal constant learning rate
matrix, α > 0 is a diagonal constant momentum term matrix andW0 is a
restricted region for each weight Wj.

The complex-valued Levenberg-Marquardt (CVLM) algorithm for
any weight vector W is described by the following update equation:

W k W k P k DY W k E k W W( +1)= ( )+ ( ) [ ( )] ( ) <j 0 (10)

The gradient terms for the complex-valued network with the first
type activation function are described by the following equations:

D k Y k( )=Φ′[ ( )]1 (11)

D k Z k C D k( )=Γ′[ ( )] * ( )2 1 (12)

DY C k Y k
C k

D k Z k[ ( )]≔ ∂ ( )
∂ ( )

= ( ) *( )1
(13)

DY J k Y k
J k

D k X k[ ( )]≔ ∂ ( )
∂ ( )

= ( ) *( )2
(14)

DY B k Y k
B k

D k U k[ ( )]≔ ∂ ( )
∂ ( )

= ( ) *( )2
(15)

Where the (*) superscript denotes a complex conjugate and transposed
vector. For the derivation of the CVBP learning algorithm we use
D k E k( )= ( ) and the weight update learning rule (9). For the derivation
of the CVLM learning algorithm we use D k I( )= , where I is an identity
matrix input for the adjoint topology, and learning rule (10).

The matrix P of the CVLM learning algorithm is an approximation
to the inverse Hessian matrix used in the second order Newton
optimization algorithm, and it is computed recursively using the
following Riccati difference equation [18]:

P k α P k P k S P k( )= [ ( −1)− ( −1)……Ω Ω* ( −1)]W k W k W k
−1

( ) ( )
−1

( ) (16)

Fig. 1. Topology of the first type CVRNN.

Fig. 2. Adjoint topology of the first type CVRNN.
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