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A B S T R A C T

Sparse representation based on dictionary has gained increasing interest due to its extensive applications.
Because of the disadvantages of computational complexity of traditional dictionary learning, we propose an
algorithm of analytic separable dictionary learning. Considering the differences of sparse coefficient matrix and
dictionary, we divide our algorithm into two phases: 2D sparse coding and dictionary optimization. Then an
alternative iteration method is used between these two phases. The algorithm of 2D-OMP (2-dimensional
Orthogonal Matching Pursuit) is used in the first phase because of its low complexity. In the second phase, we
create a continuous function of the optimization problem, and solve it by the conjugate gradient method on
oblique manifold. By employing the separable structure of the optimized dictionary, a competitive result is
achieved in our experiments for image de-noising.

1. Introduction

Recently, sparse representation has received many attentions for its
extensive applications to face recognition [1] and image processing,
such as image de-noising [2], image super resolution reconstruction
[3–5], etc. The model supposes that a signal can be represented as a
sparse linear combination of a few columns of a dictionary, i.e.,
suppose that D ∈ m n×2 2

is a dictionary with m n⪡ , a signal y ∈ m2

can be expressed as y Dx≈ , such that y Dx∥ − ∥ ≤ ϵp . Here the vector
x ∈ n2

is a sparse vector, i.e., k mx∥ ∥ = ⪡0
2, which means that most of

its entries are zeros or have small magnitudes [6–10].
The properties of dictionary D decide the sparsity of y. The

constraints on the dictionary include [6,7]:

(1) The columns of dictionary have unit Euclidean norm, i.e.,
D∥ ∥ = 1i 2 for i n= 1, 2,…, 2.

(2) The dictionary has a full rank, i.e., rank mD( ) = 2.
(3) The dictionary does not have linearly dependent columns, i.e.,

D D≠ ±i j for i j≠ .

Therefore, it is crucial to find a dictionary so that the interested
signal can be represented as accurate as possible with a coefficient
vector x that is as sparse as possible [9,10]. There are two different

types of dictionaries: analytic dictionaries and learned dictionaries
[11]. In many cases, the analytic dictionaries can lead to simple and
rapid algorithms for the problem of sparse representation, such as
Wavelets [12], Curvelets, and Fourier transform matrix. But for some
special signals, e.g., the natural facial images, the analytic dictionaries
cannot lead to a perfect result, because the structure of signals is so
complicated that a simple dictionary cannot capture the most salient
features of them. Thus, algorithms of dictionary construction were
proposed based on learning samples [10,13–15]. The typical dictionary
learning problem is

argmin s tX DX Y∥ ∥ . . ∥ − ∥ ≤ ϵF
XD,

0
2

(1)

Here, ||*||0 denotes the ℓ0 norm, which counts the nonzero entries
of a matrix. Y Y Y Y= [ , ,…, ] ∈N

m N
1 2

×2
is the matrix containing N

learning samples, and the matrix X X X X= [ , ,…, ] ∈N
n N

1 2
×2

contains
the corresponding sparse coefficients.

The most popular dictionary learning algorithm is the K-SVD,
which is an alternative iteration method [10,15,16]. Recently, because
of the classification inability of K-SVD, discriminative K-SVD was
proposed [17]. In [11], a Fisher Discriminative K-SVD (FD-KSVD) was
proposed, which not only employed the Fisher discrimination criterion
to obtain discriminative coding coefficients, but also introduced a linear
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predictive classifier. In [6], they presented an analysis sparse model
and projected the analysis dictionary to the oblique manifold due to the
constraints of the dictionary. In this algorithm, the dictionary is
updated as a whole part, which is different with the previous algorithms
that updated the atoms of dictionary one by one. However, these
algorithms are used for 1D vectors. When we deal with 2D signals, such
as natural images, we need to convert images to 1D vectors. This kind
of process not only breaks the potential correlations within the images,
but is also restricted due to limitations in memory and computational
ability [6,7,18]. Thus, separable learning schemes were proposed,
which tackled this problem by enforcing additional structure on the
learned dictionary, as follows:

∑
N

s t ddiag

rank m ddiag rank m

X AX B S X A A I

A B B I B

argmin 1 . . = , ∈ , ( ) = ,

( ) = , ( ) = , ( ) = .

j

N

j j
T

j j
n n T

n

T
n

A X B

A B

,{ } , =1
0

×

j j
N

A B
A

B

=1

(2)

Here, ddiag(*) denotes a diagonal matrix consisting of the main
diagonal elements of *. S{ }j j

N
=1 are the learning samples and

 j NS ∈ , ∀ = 1,…,j
m m×A B . The sizes of A ∈ m n×A A and B ∈ m n×B B

may be different. In this paper, we let m m m n n n= = , = =A B A B for
simplicity.

In [16], 2D synthesis sparse model was proposed, which made full
use of the local correlations within natural images. In this model, the
dictionary D ∈ m n×2 2

has a separable structure, which can be given by
the Kronecker product of two smaller dictionaries A ∈ m n× and

B ∈ m n× , formulated as D B A= ⊗ . Then, it can be seen as a
combination of twice K-SVD along the horizontal and vertical direc-
tions, respectively. In [7], based on the same assumption of the
structure of D, they used a continuous function to measure the sparsity
and optimize the problem through the conjugate gradient algorithm.
With the constraints on A and B, they restricted these two dictionaries
to be elements of the oblique manifold, i.e.,

OB m n rank m ddiagQ Q Q Q I( , )≔{ ∈ | ( ) = , ( ) = }m n T
n

× . However, they
ignored the influence of dictionary rank condition for the sparse
representation. Also, a same step size was used for updating A B, ,
and X{ }j j

N
=1.

In this paper, we propose an algorithm for analytic separable
dictionary learning. Inspired by the K-SVD, we optimize the sparse
coefficients and the dictionaries in two phases. In the first phase, the
sparse coefficients X{ }j j

N
=1 are updated by the 2D-OMP (2-dimensional

Orthogonal Matching Pursuit). In the second phase, the dictionaries
are optimized with the given X{ }j j

N
=1. This optimization procedure

alternated between these two phases until the stop criterion is satisfied.
The main contributions are as follows:

(1) Different with [7] that updates X A{ } ,j j
N
=1 and B in a same step

size, they are updated respectively in our proposed algorithm. 2D-OMP
is used to update X{ }j j

N
=1, which not only ensures the sparsity of X{ }j j

N
=1,

but also speeds up the convergence of the objective function. Moreover,
A and B are projected onto the oblique manifold and updated together,
which uses the matrix multiplication instead of the SVD decomposition
used in the traditional K-SVD. This will save the computational cost for
the dictionary optimization, especially when the dictionary dimension
is high.

(2) To emphasize the constraints of full rank and incoherence, two
log-barrier functions are added to the objective function such that a
continuous differentiable objective function can be obtained, which
ensures that the conjugate gradient method can be applied to optimize
the dictionary. Also, full rank constraint will improve the robustness of
the optimized dictionary.

(3) Finally, an analytic separable dictionary learning algorithm is
proposed, which not only reduces the computational cost of the

dictionary optimization, but also optimizes the dictionary quickly even
in the high-dimensional situation.

The remainder of this paper is organized as follows. In Section 2, we
describe our proposed approach in details. The results are presented in
Section 3. Section 4 concludes this paper.

2. Learning schemes

To solve the optimization problem (2), we divide it into two phases.
The first phase calculates the sparse matrices X{ }j j

N
=1 with the given

dictionaries, which is called as the 2D sparse coding. In the second
phase, we add the constraints of dictionaries through coefficients to the
objective function. Due to the constraints of the dictionary and the
continuous differentiable objective function, the dictionaries A and B
are projected to the oblique manifold, and the geometric conjugate
gradient method is employed to solve this function. By projecting the
dictionaries to the oblique manifold, they can be updated as a whole
part, which avoids updating the atoms of dictionary one by one such
that the updating speed can be improved.

2.1. 2D Sparse coding

The aim of this phase is to get the sparse matrices X{ }j j
N
=1 with the

given dictionaries A and B. We re-formulate this problem as

s t j NX AX B Sarg min ∥ ∥ . . ∥ − ∥ ≤ ϵ, ∀ = 1, 2,…,j j
T

j F
X

0
2

j (3)

[19] developed a 2D-OMP for 2D sparse signal recovery. With the
advantages of low complexity and good performance, we use this
algorithm to solve the problem (3). In 2D-OMP, each atom of
dictionary is a matrix, which is the outer product of two columns of
A and B respectively, i.e.,
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(4)

Here, Ap is the pth column of the matrix A. i mA , 1 ≤ ≤i p, is an
entry of the matrix A, and so do Bq and Bi q, . Then Sj can be represented

by the weighted sum of Dp q, . Suppose that S X D= ∑ ∑∼ ͠j p
n

q
n

p q j p q=1 =1 , , , is

an approximation of Sj (X͠p q j, , is an entry of the 3-dimensional matrix X͠.
p, q and j are indexes of the three dimensions respectively), X ∈j

n n×

can be obtained

gX S S H= arg min ∥ − ∥ =∼
j j j F

X

2 −1

j (5)

where

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

tr tr

tr tr
H

D D D D

D D D D
=

( ) ⋯ ( )
⋮ ⋮

( ) ⋯ ( )
,

p q p q
T

p q p q
T

p q p q
T

p q p q
T

, , , ,

, , , ,

l l

l l l l l l

1 1 1 1 1 1

1 1

g tr trS D S D= [ ( , ),…, ( , )]j p q
T

j p q
T T

, ,l l1 1 . l is the number of the selected
atoms in the current iteration. For the details of 2D-OMP, please refer
to [19].

2.2. Dictionary optimization

In this phase, we will optimize the low dimensional dictionaries A
and B. Different from [7], we add two log-barrier functions to the
objective function to emphasize the full rank and the incoherence
constraints, as follows.
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