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a b s t r a c t

Solving cooperative problems for multi-agent systems, in which the agent's artificial behaviors are
similar to naturally biological behaviors of agents in practice, is a major challenge. The problems become
more complex if the controlled agents are multi-input and multi-output (MIMO) nonlinear systems
lacking knowledge of internal system dynamics and affected by external disturbances. In this paper,
firstly, based on adaptive dynamic programming, three neural networks (NNs) (actor/disturber/critic) of
control schemes for two-player games are integrated into the structure with only one NN, known as
integrated NN (INN), with the aim of reducing computational complexity and waste of resources. Sec-
ondly, an INN weight update law and an online control algorithm, which updates parameters in one
iterative step, are designed to find H1 optimal cooperative control solutions. With the aid of Lyapunov
theory, we prove that the INN weight approximation errors and the cooperative tracking errors are
uniformly ultimately bounded (UUB), and the system parameters converge to the approximately optimal
values. Finally, two simulation studies, one of which is compared to three-NN structures in existing
literature, are carried out to show the effectiveness of the proposed INN structure.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by works of a flock of birds, colony of ants, and other
naturally biological systems, cooperative problems for agents have
received much attention in recent years [1–10]. In the cooperative
systems, each agent exchanges information with others to do his
actions, which not only satisfies his own but also helps his swarm
reach the common goals. In practice, the agents are so complex
that their models must be presented as a multi-input and multi-
output (MIMO) nonlinear system lacking knowledge of internal
system dynamics. They are also impacted by external disturbance.
Therefore, solving the cooperative problem, in which the agent's
artificial behaviors are similar to naturally biological behaviors of
practical agents, is always a major challenge.

In the cooperative systems, graph theory is used to established
a communication graph among the agents [1–10]. Depending on
the presence of leader nodes in the graph, the cooperative pro-
blem can be divided into two types: the cooperative regulator
problem and the cooperative tracking problem. In this paper, the
latter is focused, where both state trajectories of follower and
leader nodes are synchronized [1,2,5–9].

Inspired by the nonlinear approximation abilities, NN structures
have been constantly developed for cooperative adaptive control
systems [9,6–8,10]. In [6], a method using the distributed NNs with

linearly parametrized structures is proposed to identify uncertainty
dynamics directly. Because of dependence on the analytic solution of
the Riccati inequality formed by the given matrices, this method is
only applied to a specific class of nonlinear systems. In [9], NN
structures with a suitable basis set of action functions are selected to
design a cooperative robust adaptive control law for linearized
dynamic agents tracking the trajectory of the leader node. In [7], NN
structures with radial basis functions (RBFs) are used to approximate
the uncertain dynamics. The RBF NN weight update laws are based
on the upper bound values of the NN weights, which are difficult to
determine in practical cooperative applications. In [8], to identify the
unknown non-linearity, linear-in-parameter NNs with the basis
functions such as sigmoid or Gaussians are chosen. The NN weight
update laws are based on the solution of Lyapunov equations derived
from the sliding mode control method. In [10], the self-structuring
NNs are designed to identify the agent's unknown dynamics directly,
where the basic functions are sigmoid in the hidden layer, but the
number of hidden nodes is dynamically computed and the sign of
input dynamic functions in the system must be known.

Most of the NN-based methods mentioned in the paragraph
above do not minimize any long-term performance functions, thus
they are not considered as optimal control methods. Recently, an
actor-critic NN (ACNN) structure from the adaptive dynamic pro-
gramming (ADP) [11] has been developed for the cooperative
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systems [4,12], where optimal value functions and control policies
are approximated by critic and actor NNs, respectively, but all node
dynamics in communication graphs are limited to double inte-
grator systems.

To solve cooperative problems of nonlinear systems impacted by
external disturbances, ACNNs are developed. In [13–15], ACNNs are
used in online algorithms, which synchronously update parameters
of NNs, to find the Hamilton–Jacobi–Isaac (HJI) solutions for the non-
zero-sum games of the two-player system [14,15] or the multi-player
system [13]. However, there are still disadvantages applying the
ACNNs, especially when a structure consists of three NNs, namely
AC3NN, is exploited [16]. In AC3NN, one NN (critic NN) is used for
approximating the optimal value function, the other two (actor NNs)
are used for approximating the controller (first player) and the dis-
turber (second player), respectively. Therefore, the greater number of
agents in the cooperative system is, the more the number of NNs is
tripled. Assume that AC3NN is used for the cooperative multiple
MIMO systems which contain a large number of feedback states.
Then the number of NN weights and the dimension of NN basis
functions representing combinations of the states will significantly
increase (see [4,13] for more survey). As a result, besides wasting
resources, AC3NN can lead to a significant increase in computational
complexity. Another disadvantage of AC3NN is that the algorithms
bring two iterative loops, i.e. while the parameters of the disturbance
law are updated in an iterative loop, the parameters of the control
law must be waited for updating in the other. Consequently, they
result in low efficiency even being applied to a single agent [17].

To overcome the disadvantages of using more than one NN, the
structures with a single NN (SOLA—Single Online Approximator)
are proposed to learn the HJI solution of the affine system [3] or
the HJB solution of the MIMO nonlinear system [18]. However,
since the SOLA weight update laws require the knowledge of the
system dynamics [3] or ignore disturbances [18], SOLA techniques
are still restricted. In addition, until now, they have been only
applied to the uncooperative problems.

In contrast, the control structures in [17,19] not only use a single
NN but also remove the assumption of the known system dynamics
[20–22]. In [17], at every loop step, parameters of the control law
and the disturbance law must be constantly held in a period of time
to collect the sample set for training the NN. In [19], external dis-
turbance of each player is ignored. Furthermore, the NN structures
in [17,19] are designed for the uncooperative problem.

Contributions: Comparing with the existing works, the main
contribution of this paper include three following aspects:

1. Design an integrated neural network (INN) structure in contrast
to the existing work in [4]. To the best of our knowledge, this
paper may be the first work that three NNs in the ADP method
are integrated into only one for the cooperative problem of the
multiple MIMO nonlinear systems. This integration aims to
reduce computational complexity and resources.

2. Design an INN weight update law, in which the knowledge of
internal system dynamics is not required, and an online H1
optimal cooperative control algorithm, in which the INN weight
parameters and the parameters of the control and disturbance
laws are simultaneously and continuously updated in one
iterative step.

3. Prove that, with the aid of Lyapunov theory, cooperative track-
ing errors of the closed-loop system and the INN weight
approximation errors are UUB, and the value function, the H1
optimal cooperative control law and the worst disturbance law
converge to approximately optimal values.

4. The effectiveness of our method is shown by comparing the
simulation results of both INN and existing three-NN structures
in [14,21].

The rest of the paper is organized as follows. In Section 2, we
introduce a distributed communication graph and derive overall
cooperative tracking error dynamics of the MIMO nonlinear sys-
tems. In Section 3, we design the INN structure, the weight update
law and the control algorithm. Simulation studies are implemented
in Section 4. Finally, a brief conclusion is drawn in Section 5.

Notations: R, Rn, and Rn�m are the set of real numbers, the n-
dimensional Euclidean space, and the set of all real n�mmatrices,
respectively. J :J defines the vector or matrix norm in Rn or Rn�m,
respectively. Vx9 ∂V=∂x denotes the gradient of V in x. The
superscript T is used for the transpose. � denotes the Kronecker
product with the properties X � Yð ÞT ¼ XT � YT , β X � Yð Þ ¼
βX
� � � Y ¼ X � βY

� �
, where X and Y are matrices and β is a scalar.

In denotes a n-dimensional identity matrix. 1n ¼ 1;…;1½ �T ARn.
diag αið Þ is a diagonal matrix whose the diagonal element i is αi.
L2 0;1½ Þ is the Banach space, for 8dðtÞAL2 0;1½ Þ, R10 JdðtÞJ2dτA
L2 0;1½ Þ.

2. Graph theory and cooperative tracking error dynamics

2.1. Distributed communication graph theory

Consider N agents in a cooperative system. The distributed com-
munication of the multiple agents can be represented by a directed
graph, GðV; E;AÞ, where the agents are characterized by the set of
nodes V ¼ s0;…; sNf g, where s0 is a leader node. Relationships among
the agents are determined by the set of edges EDV � V with a
connectivity weight matrix A¼ ½aij�, where aii ¼ 0, aij40 for aijAE
and aij ¼ 0, otherwise. If the states of the agent si is available to sj,
then sj is a neighbor of si. All neighbors of si give a neighbor set that
is defined by Ni ¼ j : sjAV; ðsi; sjÞAE� �

. Define a graph Laplacian
matrix L¼H�AARðNþ1Þ�ðNþ1Þ,whereH¼ diagðhiÞ,hi ¼

P
jANi

aij.
Note that row sums of L are equal to zero.

A directed path is a sequence of ordered edges ðsi; siþ1ÞAE,
i¼ 0;…;N�1. If a directed path from si to sj exists such that
8si; sjAV, siasj, then the directed graph is strongly connected.
The graph is directed spanning tree if the set s1;…; sNf g exits at
least one node with a directed path to all other nodes.

The connectivity matrix between the agent i and the leader is
defined as

Z ¼ diag z1; z2;…; zN½ � ð1Þ

where zi ¼ 1 if the agent i connects to the leader, and zi ¼ 0,
otherwise.

2.2. Node dynamics

Consider N agents are distributed on the graph GðV, E;AÞ.
Agent's node dynamics is a MIMO nonlinear system presented by
m (mZ2) equations

_xil ¼ f ilðxilÞþgilðxilÞxiðlþ1Þ þkilðxilÞdil; l¼ 1;…;m�1
_xim ¼ f imðximÞþgimðximÞuimþkimðximÞdim

(
ð2Þ

where for all i¼ 1;…;N and l¼ 1;‥;m, xil ¼ xTi1;…; xTil
� �T

ARn1 þ⋯þnl

with xilARnl being a state vector assumed available for feedback.
uimARnmþ 1 is a control input vector. dil ARnl is a unknown boun-
ded disturbance vector such that dilAL2 0;1½ Þ. f ilðxilÞARnl , kilðxilÞ
ARnl�nl and gilðxilÞARnl�nlþ 1 are the smooth nonlinear function
vector and matrices, respectively. Furthermore, f ilðxilÞ denotes
unknown internal dynamics of the system.
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