
Author's Accepted Manuscript

Adaptive fuzzy PD control with stable H∞ tracking guarantee

Yongping Pan, Meng Joo Er, Tairen Sun, Bin Xu, Haoyong Yu

www.elsevier.com/locate/neucom

PII: S0925-2312(16)30987-0

DOI: http://dx.doi.org/10.1016/j.neucom.2016.08.091

Reference: NEUCOM17525

To appear in: Neurocomputing

Received date: 11 March 2016 Revised date: 8 August 2016 Accepted date: 28 August 2016

Cite this article as: Yongping Pan, Meng Joo Er, Tairen Sun, Bin Xu and Haoyong Yu, Adaptive fuzzy PD control with stable H∞ tracking guarantee *Neurocomputing*, http://dx.doi.org/10.1016/j.neucom.2016.08.091

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Adaptive fuzzy PD control with stable H^{∞} tracking guarantee *

Yongping Pan ^a, Meng Joo Er ^b, Tairen Sun ^c, Bin Xu ^d, Haoyong Yu ^a

^aDepartment of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore

^bSchool of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

^cSchool of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013. China

^dSchool of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Abstract

For indirect adaptive fuzzy H^{∞} tracking control (AFHC) of perturbed uncertain nonlinear systems, sliding-mode control (SMC) compensation usually has to be applied to ensure stability and H^{∞} robustness of the closed-loop system. We prove that indirect AFHC without SMC compensation is sufficient to guarantee stable H^{∞} tracking under given initial conditions and parameter constraints. The control structure only includes an indirect adaptive fuzzy control term and a proportional derivative (PD) control term. A certainty equivalent control law is slightly modified such that both a lumped perturbation and adaptive laws are independent of the PD control term. This modification is significant since it not only plays a key role in stability analysis, but also alleviates some drawbacks of existing AFHC approaches for practical applications. An illustrative example has been provided to verify correctness of the developed theoretical result.

Key words: Adaptive control, disturbance, neuro-fuzzy system, H^{∞} tracking, nonlinear system, uncertainty.

Email addresses: biepany@nus.edu.sg (Yongping Pan), emjer@ntu.edu.sg (Meng Joo Er), suntr@ujs.edu.cn (Tairen Sun), binxu@nwpu.edu.cn (Bin Xu), bieyhy@nus.edu.sg (Haoyong Yu).

^{*} Corresponding author: H. Yu.

Download English Version:

https://daneshyari.com/en/article/4947752

Download Persian Version:

https://daneshyari.com/article/4947752

<u>Daneshyari.com</u>