Neurocomputing 237 (2017) 114-132

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Moments discriminant analysis for supervised dimensionality reduction @ CroseMark

K. Ramachandra Murthy*, Ashish Ghosh

Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India

ARTICLE INFO ABSTRACT

Most of the well-known supervised dimensionality reduction methods assume unimodal or Gaussian like-
lihoods, which may not be appropriate in the real life applications. In this manuscript, we introduce a novel
supervised dimensionality reduction approach, moments discriminant analysis, which models linear relation-
ships between the high-dimensional input space and a low-dimensional space by maximizing the discrimination
between second order raw moments of different classes to improve the generalization capability of a classifier.
Unlike the state-of-the-art methods, moments discriminant analysis is intended to accommodate data
distributions that may be multimodal and non-Gaussian. Initially, experiments using synthetic random data
(generated from different probability distributions) are performed to prove the efficiency of the proposed
method for multimodal and non-Gaussian data with the help of five separability measures. Also, extensive
experimental results on UCI machine learning repository and image retrieval on WANG and MIT (Oliva and
Torralba) databases are carried out in order to exhibit the effectiveness of moments discriminant analysis over
the state-of-the-art methods.
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1. Introduction

Any progresses in efficient data processing and storage capacities
need control on the number of useful variables/features/attributes.
Real world applications, such as e-science, medical image processing,
video processing, speech signal analysis, bio-informatics, biometrics,
document classification, etc., deal with the data of very high dimen-
sionality [1-4]. High dimensional data is a big challenge for the
learning problems because of the difficulty in modelling the precise
relationships between the large number of features and the class
variables. In such cases, it may be desirable to reduce the dimension-
ality in order to improve the accuracy and performance of a classifier.
The goal of Dimensionality Reduction (DR) is to embed high dimen-
sional data samples in a low-dimensional space while most of ‘intrinsic
information’ contained in the data is preserved. Moreover, the reduced
feature set of the data can have better interpretability than the original
ones [5-8].

Statistical moments play an important role among DR methods like
Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA) [9], Maximum Margin Criterion (MMC) [10,11], Angle Linear
Discriminant Embedding (ALDE) [12], Two-Stage ALDE (TSALDE),
Linear Boundary Discriminant Analysis (LBDA) [13], Local Fisher's
Discriminant Analysis (LFDA) [14], Exponential Discriminant Analysis
(EDA) [15], etc. For example, PCA tries to maximize the variational
(second order central moments) information of features, and LDA,
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LBDA, LFDA, EDA and MMC maximize distance between the means
(first order raw moments) of the classes and minimize the within-class
scatters (variances, i.e., second order central moments). Whereas,
ALDE and TSALDE use CO-Angle to model between-class (with the
help of different class means) and within-class scatter matrices. Most of
the situations, these methods generate a projection space which trend
towards means (centers) of the classes by assuming Gaussian like-
lihoods on the data. For example, from Fig. 1(a), they assume Gaussian
distribution even on non-Gaussian (uniform) data and generate a mean
biased projection space (W). That means, W maximizes the distance
lu, — u,!, and doesn't bother about discrimination of o; and o» (ie.,
loy — o, is very small), where |.| denotes the modulus of a real number.
Whereas, W, tries to maximize the discrimination between both
means (1) and variances (o) to preserve the separability between
classes. That means, both the distances lu; — y,| and loy — o,! are
maximized on Wy, Thus, W, balances the discrimination between
means and variances. Also, if the means of different classes are
overlapped (in case of multimodal data) then the between class scatter
of these methods will vanish. This may force them to depend on within
class scatter only and lead to overlapping of classes. Fig. 1(b) narrates
two multimodal classes for which means are overlapped at a point. In
this scenario, the above methods generate a projection space (W)
through minimizing within class scatter only and ignores between class
scatter. But, W, produces non-overlapping classes by preserving the
discrimination (i.e., lo; — o,!) between class variances (o; and o,). The
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Fig. 1. 14 and oy are mean and variance of the class [, respectively, [=1, 2. Here *(Green) and o (blue) patterns represent class 1 and 2, respectively. (a) Non-Gaussian (b) Multimodal.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

main aim of this article is to provide such a projection space (Wop,).

Statistical moments are numerical characteristics of a probability
distribution and are applicable to many different aspects of pattern
recognition, image processing, machine learning, bio-informatics, etc.
[16,17]. When applied to pattern classification, they describe the
discrimination information of classes (or distributions) [17]. For a
bounded probability distribution, the collection of raw moments
uniquely determines the underlying distribution. Any probability
density can be modelled with the help of it's population parameters.
In statistics, ‘the method of moments’ is a procedure to estimate the
population parameters with the help of ‘sample’ raw moments [18].
One starts with deriving equations, that relate the ‘population’
moments (i.e., the expected values of powers of the random variable
under consideration) to the parameters of the distribution. Then a
sample is drawn and ‘population’ raw moments are estimated from
that ‘sample’. The equations are then solved for the parameters of the
distribution, using the ‘sample’ raw moments in place of (unknown)
‘population’ raw moments. Moreover, the ‘sample’ raw moments are
unbiased estimates of ‘population’ raw moments. On the other hand,
the ‘sample’ central moments are not unbiased because their compu-
tation uses up a degree of freedom by using the ‘sample’ mean. For the
higher order central moments, the unbiased estimates of the ‘popula-
tion’ central moments will become more and more complex. Also
central moments may have disturbances because the moments are
biased towards mean of the data [18]. Thus, the projected directions
of DR methods which are modelled on central moments, explicitly,
may be biased towards means of the classes (Fig. 1). Therefore,
collection of ‘sample’ raw moments are good enough to model the
underlying probability density and henceforth, MDA will use ‘sample’
raw moments to reduce the dimensionality.

In this work, we propose a novel supervised DR approach, Moments
Discriminant Analysis (MDA), that models linear relationship between
feature vectors and class labels by maximizing the discrimination
between second order class raw moments. In order to capture the
non-linear relationships within the features and class variable, kernel
version of MDA (KMDA) has been developed. MDA possesses the
following advantages over the existing state-of-the-art DR methods.

(i) MDA is applicable to the data with distributions that may be non-
Gaussian.

(ii) Even for multimodal distribution data, MDA can be used for
simplification of decision boundary.

Experimental study has been performed on wide variety for data sets
as,

e Initial experiments have been performed on thirty two (32) synthetic

data sets' to prove the efficiency of MDA to Gaussian, multimodal
and non-Gaussian data. The comparisons have given using different
state-of-the-methods according to their applicability for

(i) Gaussian: ALDE [12], EDA [15], MMC [10,11] and LDA [9].

(ii)) Multimodal: Quadratic Mutual Information (QMI)[19],
Exponential Local Discriminant Embedding (ELDE) [20], Linear
Discriminative Gaussian (LDG) [21], LBDA [13] and LFDA [14].

(iii) Non-Gaussian: QMI [19], Stable Orthogonal Local
Discriminant Embedding (SOLDE) [22] and Exponential Marginal
Fisher Analysis (EMFA) [23]. These methods have been evaluated
using five different separability measures, namely, volume of overlap
region (overlap), Thornton's Separability Index (7SI), Fraction of
points on Boundary (#B), volume of local neighborhood (volume)
and Nonparametric Separability (NS) measures [24].

e Next, twelve UCI machine learning [25] data sets have been used to
compare the performance of MDA with the state-of-the-art methods
like, ALDE, TSALDE, LBDA, LDG, EDA, QMI, ELDE, SOLDE,
EMFA, LFDA, MMC, Discriminant Component Analysis (DCA)
[26] and LDA. And KMDA's performance is compared with the
available kernel versions of the above linear methods like Kernel
QMI (KQMI) [19], Kernel LFDA (KLFDA) [14], Kernel MMC
(KMMC) [11], Kernel DCA (KDCA) [26], and Kernel Discriminant
Analysis (KDA) [27,28] with the help of Nearest Neighborhood (NN)
[9] classifier.

e Finally, on WANG [29] and MIT (Oliva and Torralba) [30] image
data sets, MDA and KMDA are compared with above mentioned
methods in the context of image retrieval.

This paper is organized as follows. Section 2 discusses related work
and Section 3 introduces MDA. Non-linear version of MDA has been
developed in Section 4 and Asymptotic time complexity analysis of
MDA has been discussed in Section 5. Experimental results are
presented in Section 6 and the manuscript has been concluded in
Section 7.

2. Related work

Linear Dimensionality Reduction (DR) methods can be divided into
unsupervised [31] and supervised. One of the popular and well-known
unsupervised DR method is Principal Component Analysis (PCA) [9].
PCA tries to maximize data variances captured in the low-dimensional
subspace, i.e., PCA minimizes the reconstruction error of the projected
data points with the original data. Independent Component Analysis

1 MDA mex file and synthetic data sets are available at http://www.isical.ac.in/~k.
ramachandra/MDA html.
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