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A B S T R A C T

Regression analysis based classification methods have attracted much interest in the face recognition area.
However, dealing with partial occlusion or illumination is still one of the most challenging problems. In most of
the current methods, the image needs to be stretched into a vector and each pixel is assumed to be generated
independently, which ignores the dependence between pixels of the error image. That is, these methods do not
consider the structure information of the image with continuous occlusion or disguise in modeling. In this
paper, it is found that the non-convex function of the singular values can well describe the low rank structure of
the image data. By virtue of this fact, we propose a bi-weighted robust matrix regression (BWMR) model for face
recognition with structural noise, in which the non-convex function of the singular values is used as
regularization. The alternating direction method of multipliers (ADMM) is applied to solving the proposed
model. Experimental results demonstrate that the proposed method is more robust and effective than the state-
of-the-art methods when handling the structural errors.

1. Introduction

Over the past years, face recognition has developed to be an
important research area in image classification and computer vision.
Like any other enduring discipline, face recognition also had its initial
challenges. For example, the facial expression (laughter, anger, etc.),
occlusion and illumination variations severely influence the face
recognition performance [1]. Presently, there are various face recogni-
tion methods. For example, in order to handle the face with structural
noise, Ou et al. [2] proposed to learn a clear dictionary and a noise
dictionary simultaneously, then the clear dictionary was applied to
classification task. You et al. [3,4] proposed a robust nonnegative patch
alignment for dimensionality reduction, the experiments show that the
learned representation is robust against occlusion, and extreme varia-
tions in illumination. Especially, regression analysis based methods
have achieved promising results and become a popular tool for face
recognition [5–11].

Linear regression classifier for face recognition aims to get the
linear representation of a test sample, and classify it by checking the
minimization of the representation error. In order to avoid over-fitting,
the regression methods admit a tradeoff between the empirical loss and
regularization as:

x xf λgmin ( ) + ( )
x (1)

where xf ( ) describe the reconstruction residual, xg ( ) is the regulariza-

tion associated with coding coefficients x, and λ is the regularized
parameter.

Using the l1-norm regularization on the coefficient vector x, sparse
representation based classifier (SRC) [5] has become one of the most
famous regression based method. Some recent work began to investi-
gate the role of sparsity in face recognition [12,13], Yang et al. [12]
gave an insight into SRC and provided that it is l1-norm constraint
rather than l0-norm that makes SRC effective. Meanwhile, Zhang et al.
[13] found that it is not necessary to adopt the l1-norm regularization,
and proposed the collaborative representation classifier (CRC) based
on the l2-norm regularization, known as ridge regression. Compared
with the SRC, the CRC has very competitive face recognition accuracy
but lower time complexity. Both the SRC and CRC, the error loss is
usually measured by the l2-norm, which assumes the pixels of the error
follow Gaussian distribution independently. However, the assumption
might to be unreasonable in real situations, such as occlusion, disguise,
etc.

Besides the representation coefficients, the reconstruction residual
also influences the performance of object classification. As we known,
the l2-norm for the residual is sensitive to various types of outliers (e.g.
occlusion, corruption, expression, etc.). Yang et al. [14] presented
robust sparse coding (RSC) model and solved it by an effective
iteratively reweighted sparse coding algorithm. RSC is essentially a
sparsity-constrained robust regression process. Naseem et al. [15]
presented robust linear regression classification (RLRC) algorithm by
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using the robust Huber estimation approach for dealing with the
random pixel corruption and illumination variation. Based on the
maximum correntropy criterion, He et al. [16] presented the corren-
tropy based sparse representation (CESR) algorithm. All of these
methods have achieved promising results in face recognition. In
addition, some scholars considered the structural noise by dictionary
learning and the.

However, in the linear regression for classification has been
mentioned above, each image has to be stretched into a vector before
classification and each pixel of error matrix is independently handled.
In detail, y y y y R= [ ; ;…; ] ∈n

n
1 2 is the testing image to be coded, n is

the number of the pixels. d d dD R= [ ; ;…, ] ∈n
n m

1 2
× denotes a dictionary

with row vector di. Let e y α e e eD= − = [ ; ;…; ]n1 2 , where d αe y= −i i i .
The RSC model can be expressed as αw e λmin ∑ + ∥ ∥α i

n
i i=1

2
1, which

imposes the different weights on error pixels. According to the RSC, the
weights corresponding to noise pixels should be small. However, for
many practical face variations, such as occlusion, disguise, or shadow
caused by illumination change, the independent assumption does not
hold. As shown in Fig. 1, the image (a) and (b) can be considered as the
testing data and the training data, respectively. From the residual
image (c1), we can find that the representation errors in the sunglasses
part are correlated, because the pixel values of the occlusion part are
zeros in the testing image (a). Therefore, assigning the different weights
to error pixels for image classification with occlusions may be
unsuitable.

Recently Yang et al. [8] found that the error image caused by
occlusion or illumination changes has low rank structure and proposed
the Nuclear norm Matrix Regression (NMR) model for face representa-
tion and classification. In modeling, NMR does not convert the matrix
into a vector, that is, it directly deals with 2-D image. The initial idea of
NMR is to achieve the best representation for the testing sample by
minimizing the rank function of the error matrix. As we known, the
rank minimization problem is NP hard. Yang et al. adopted the nuclear
norm as the relaxation function of rank function and demonstrated the
effectiveness of the nuclear norm for structural noise characterization

by experiments on several public databases. Using the nuclear norm as
matrix regularization and combining the idea of the RSC, Qian et al.
[17,18] proposed robust nuclear norm regularized regression (RNR)
method for face recognition, while the RNR model still assigns the
weights to the each pixel of the residual image.

In this paper, we develop a robust matrix regression for face
recognition problem. It is observed that the occlusion part can be
considered as the set of outliers and the different singular values can
describe the structure error, Thus, the weights is assigned to singular
values rather than pixels of error image in our method. By a series of
matrix completion experiments, we can find that the non-convex
function of the singular value can characterize the essential low rank
structure of the image matrix. Therefore, we adopt the non-convex
function of the singular value as the regularization to depict the low
rank structure information. The model can be solved via the ADMM
method.

The remainder of the paper is organized as follows: Section 2
introduces the Bi-Weighted robust Matrix Regression model (BWMR)
and presents the ADMM method to solve the model. In Section 3, we
suggest the classifier criterion for robust classification. In Section 4, we
conduct experiments and comparisons with the state-of-the-art meth-
ods. Finally, Section 5 concludes the paper.

Notations : Throughout this paper, Rn denotes the space of n-
dimensional real column vectors, and Rm m×1 2 denotes the space of
m m×1 2 dimensional real matrices. For a matrix E R∈ m m×1 2 (we assume
that m m≤1 2 in this work), we write its singular value decomposition
(SVD) as E UΣV= T with U R∈ m m×1 1, V R∈ m m×2 2 and

σΣ = [diag{ }, 0]i i m, =1,2, …, 1 , where σi is the i-th largest singular value of
E. σ σ σ σ= ( , ,…, )m

T
1 2 1 denotes the singular value vector. rank E( ) is the

rank of E, i.e. the l0-norm of the singular value vector.
σE E∥ ∥* = ∑ ( )i

m
i=1

1 is the nuclear norm of a matrix E, and
w σE E∥ ∥ * = ∑ ( )w i

m
i i, =1

2 denotes the weighted nuclear norm. The F-

norm of matrix, Σ eE =F ij ij
2 2, the l1-norm of a vector is defined by

x x∥ ∥ = ∑ | |i1 . l2-norm of a vector is defined by x x∥ ∥ = (∑ )i2
2 1/2. vec (·)

denotes an operator converting a matrix to a vector.

Fig. 1. The example shows the regression method with occlusion. (a) the test image with glasses, (b) the training images, (c1) the error image, (c2) the reconstructed image with some
partial small singular values, (d) the singular values of the error image.
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