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a  b  s  t  r  a  c  t

In this  paper,  we  propose  a graph-based  clustering  algorithm  called  “probability  propagation,”  which  is
able to  identify  clusters  having  spherical  shapes  as well  as  clusters  having  non-spherical  shapes.  Given
a  set of objects,  the  proposed  algorithm  uses  local  densities  calculated  from  a  kernel  function  and  a
bandwidth  to  initialize  the  probability  of  one  object  choosing  another  object  as its  attractor  and  then
propagates  the probabilities  until  the  set  of  attractors  become  stable.  Experiments  on both  synthetic
data  and  real  data  show  that  the  proposed  method  performs  very  well  as  expected.
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1. Introduction

Data clustering or cluster analysis is a fundamental tool for data analysis. The
goal of data clustering is to divide a set of items into groups or clusters such that
items in the same cluster are more similar to each other than to items form other
clusters [12,32]. As a result, data clustering has found applications in a wide range
of  areas such as bioinformatics [7,22], pattern recognition [20], health care [33],
insurance [13,15], to just name a few.

In the past 60 years, many clustering algorithms have been developed to achieve
the  task of data clustering [19]. These algorithms differ significantly in terms of how
clusters are defined and how the clusters are identified. The k-means algorithm [24]
is one of the most popular and classical clustering algorithms. Used to find groups of
objects with small distances among cluster members, the k-means algorithm starts
from k initial cluster centers and repeats updating cluster members and cluster
centers until some stopping criterion is met. The number of clusters, k, is a parameter
of the algorithm. One drawback of the k-means algorithm is that it is quite sensitive
to  initial cluster centers, which affect clustering results and the convergence speed.
For  example, [26] compared four initialization methods for the k-means algorithm
and  found that random initialization is not the best method.

To address the cluster center initialization problem, Frey and Dueck [11]
proposed an efficient clustering method called affinity propagation. The Affinity
Propagation (AP) algorithm starts with the similarities between pairs of data points
and  repeats passing real-valued messages between data points until a high-quality
set of exemplars (i.e., cluster centers) and corresponding clusters are found. Unlike
the  k-means algorithm [24], the AP algorithm considers simultaneously all data
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points as cluster centers and thus does not suffer from the cluster center initializa-
tion problem.

One drawback of the AP algorithm is that the rules of passing messages between
data points are complicated. In the AP algorithm, two  types of messages are
exchanged between data points: the responsibility and the availability. As we will
see  in Section 2, the rule for updating the responsibility involves calculating the
maximum of sums of the availability and the similarity; the rule for updating the
availability involves calculating the sum of positive responsibilities.

Motivated by the AP algorithm, we propose in this paper a novel clustering
algorithm called “probability propagation,” which is able to identify clusters having
spherical shapes as well as clusters having non-spherical shapes. The probability
propagation (PP) algorithm starts with a matrix of probabilities calculated from
local densities and keeps propagating probabilities until the set of attractors become
stable. Here we  use the term “attractor” to represent a cluster center because the
clusters found by the PP algorithm can have non-spherical shapes.

The PP algorithm we proposed is similar to the AP algorithm and the Markov
Clustering (MCL) algorithm in that all three algorithms involve certain message-
passing mechanism. One major difference between the PP algorithm and the AP
algorithm is that the rules of message-passing in the former are simpler than those
in  the later. Another difference is that the PP algorithm is able to identify clusters of
non-spherical shapes but the AP algorithm cannot. One major difference between
the  PP algorithm and the MCL  algorithm is that the PP algorithm does not use the
inflation operator, which is required by the MCL  algorithm. Another difference is
that the stochastic matrix initialization of the PP algorithm is different from that of
the MCL  algorithm.

The remaining of the paper is structured as follows. In Section 2, we give a
brief description of the AP algorithm, the MCL  algorithm, and spectral clustering.
In  Section 3, we  present the PP algorithm in detail. In Section 4, we  demonstrate
the performance of the PP algorithm by conducting experiments on both synthetic
and  real data sets. In Section 5, we  conclude the paper and point out some areas for
future research.
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2. Literature review

In general, there are two types of clustering algorithms [21]:
hierarchical and partitional. Hierarchical clustering algorithms pro-
duce a sequence of nested clusters organized as a hierarchical tree.
Hierarchical clustering algorithms can be further classified into
two types: agglomerative and divisive. An agglomerative algorithm
starts from each object as a cluster and keeps merging clusters until
all objects are in one cluster. In contrast, a divisive algorithm starts
from all objects as one cluster and keeps splitting clusters until
every cluster contains one object. Unlike hierarchical clustering
algorithms, partitional clustering algorithms produce a single par-
tition of the data instead of a sequence of partitions. The k-means
algorithm, the AP algorithm, the MCL  algorithm, and spectral clus-
tering algorithms are partitional algorithms. In this section, we give
a brief introduction to the AP algorithm, the MCL  algorithm, and
spectral clustering.

2.1. The AP algorithm

As we mentioned before, responsibility and availability are two
types of messages exchanged between data points in the AP algo-
rithm. The responsibility r(i, k), which is sent from data point i to
candidate exemplar point k, reflects how well-suited it would be for
point k to be the exemplar of point i. The availability a(i, k), which
is sent from candidate exemplar point k to data point i, reflects
how appropriate it would be for data point i to choose candidate
exemplar k as its exemplar.

The rules for updating the responsibility r(i, k) and the availabil-
ity a(i, k) are given below [11]:

r(i, k) ← s(i, k) − max
j,j /=  k
{a(i, j) + s(i, j)}, (1)

a(i, k) ← min

⎧⎨
⎩0, r(k, k) +

∑
j,j/∈{i,k}

max{0, r(j, k)}

⎫⎬
⎭ , i /= k, (2)

a(k, k) ←
∑
j,j /=  k

max{0, r(j, k)}, (3)

where s(i, j) is the similarity between points i and j for i /= j and
s(k, k) is an input parameter called “preference.” The larger the
value of s(k, k), the more likely that the point k is to be chosen
as an exemplar. To avoid numerical oscillations, the messages are
damped according to a user-specified parameter.

In the AP algorithm, responsibilities and availabilities are
updated according to the aforementioned rules repeatedly until
some stop criterion is met. A simple stop criterion is to terminate
the iterative process after a fixed number of iterations. At any step
of the iterative process, responsibilities and availabilities can be
combined to identify clusters and their members as follows. For
data point i, let

k = argmax
j
{a(i, j) + r(i, j)}.

Then point i is an exemplar or cluster center if k = i and point k is an
exemplar for point i if k /= i.

2.2. The MCL  algorithm

The MCL  algorithm is a graph clustering algorithm developed
by [30]. Given a data set, a graph is first created from the similarity
matrix of the data set. The MCL  algorithm starts from the stochas-
tic matrix created from the graph and repeats manipulating the
stochastic matrix until the stochastic matrix does not change.

Consider a data set with n points. Let G be a graph with n vertices
corresponding to the n data points. Two  vertices i and j are con-
nected if the distance between points i and j is less than a threshold
parameter ı. The graph G can be represented by an n × n matrix TG
as follows: TG(i, j) = 1 if i and j are connected or 0 if otherwise. Let
M be the corresponding stochastic matrix defined as:

M(i, j) = TG(i, j)∑n
j=1TG(i, j)

, 1 ≤ i, j ≤ n.

The stochastic matrix is obtained by normalizing each column of
the matrix TG.

Once the stochastic matrix M is created, the MCL  algorithm
proceeds to update M recursively by expansion and inflation. The
expansion operator Expt is defined as

ExptM = Mt, (4)

where t is a positive integer. The expansion operator is responsi-
ble for allowing flow to connect different regions of the graph or
network. The inflation operator �r is defined as

(�rM)(i, j) = Mr(i, j)∑n
j=1Mr(i, j)

, (5)

where r is a positive real number. The inflation operator raises each
element of M to the rth power and then normalizes each column.
The inflation operator is responsible for both strengthening and
weakening current flow of information that influences the granu-
larity of clusters. After a number of iterations, the matrix M becomes
invariant under both expansion and inflation, and all non-zero ele-
ments in every column become equal.

Clusters can be formed by observing the final stochastic matrix.
Let M* be the invariant stochastic matrix obtained from the iterative
process. If M*(i, j) = 1, then M*(i, j) is the only non-zero entry in
column j. In this case, points xi and xj are grouped to the same
cluster. If 0 < M*(i, j) < 1, then there are n/M*(i, j) non-zero entries
in column j. In this case, point j can be grouped with any point i
with M*(i, j) > 0. For real data sets, the later case usually does not
happen. As long as the entries in a column of the stochastic matrix
are different to each other, the inflation operator will reduce the
small entries to zero.

The MCL  algorithm requires two parameters t and r, which are
used in Eqs. (4) and (5), respectively. The default value of t is 2. The
parameter r affects the granularity of clusters. Increasing the value
of r can increase the number of clusters. The default value of r is
also set to 2.

The MCL  algorithm can be modified to handle large data sets
by pruning small entries in all columns of the stochastic matrix.
In the exact implementation of the MCL  algorithm, the number of
operations in each iteration is O(n3), where n is the number of data
points. If each column of the stochastic matrix is pruned to have
at most m non-zero entries, then the number of operations in each
iterations can be reduced to O(nm2). For a more detail description
of the MCL  algorithm, readers are referred to [29].

2.3. Spectral and Kernel clustering

Although spectral clustering algorithms are not message-
passing algorithms, they are graph-based algorithms. Like the MCL
algorithm, spectral clustering algorithms are able to identify clus-
ters of arbitrary shapes [23,25,27]. Spectral clustering is also related
to kernel clustering. It has been pointed out that kernel k-means [8]
and spectral clustering are two equivalent approaches [9]. In this
subsection, we present a spectral clustering algorithm. In general,
a spectral clustering algorithm consists of three steps [1, Chapt. 8]:
first, a similarity graph of all data points is constructed; second,
the data points are mapped to a feature space in which clusters
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