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A B S T R A C T

In recent years, manifold alignment methods have aroused a great of interest in the machine learning
community which construct a common latent space shared by multiple input data sets. In a semi-supervised
problem, it is assumed that some predetermined correspondences are available to us. The effectiveness of the
semi-supervised manifold alignment methods may be very limited with very limited prior information. In this
paper, we propose a novel semi-supervised manifold alignment algorithm with few given pairwise correspon-
dences. Our approach characterizes the manifold structure of each sample point using the geodesic distances
between the sample point and given correspondences. Then we build the connections between the points
sampled different manifolds using the characterized manifold structure. The points of multiple data sets are
finally projected to a common space simultaneously preserving the local geometry of each manifold and the
captured connections between manifolds. We demonstrate the effectiveness of our method in a series of
carefully designed experiments.

1. Introduction

In many real-world applications, observations represented as high-
dimensional data can be modeled as sample points lying on low-
dimensional nonlinear manifolds. There have been advances in devel-
oping effective and efficient algorithms for learning meaningful low-
dimensional manifold from the high-dimensional data. These algo-
rithms include isometric mapping (Isomap) [20], locally linear embed-
ding (LLE) [17], Laplacian eigenmaps (LE) [2], and local tangent space
alignment (LTSA) [30], etc. Due to simple geometric intuitions,
straightforward implementation, and global optimization, these algo-
rithms have been successfully applied in many research fields such as
data mining, machine learning, image analysis, and computer vision.

Although these manifold learning algorithms have been successfully
applied for real-world data analysis, they are designed to discover the
low-dimensional features of the sample points lying on a single
manifold. In many real-world applications like matching words and
pictures [15,18], cross-lingual information retrieval [4–6,21], image
interpretation [1,28], it is required to discover the latent features of two
or more disparate input data sets. Since these input data sets lie on
different manifolds, the general manifold learning algorithms are not
applicable.

More recently, manifold alignment algorithms are proposed to
construct a common latent space shared by multiple input data sets

[9,23]. The framework of the most manifold alignment algorithms
consists of the following steps:

(1) Discover manifold structure of each data set. The discovered
manifold structure can be local or global geometry. Most of the
existing manifold alignment algorithms are designed to preserve
local geometries of the input manifolds [9,22,23]. In some real-
world applications such as cross-lingual information retrieval, the
global manifold geometry need to be respected [26]. The global
geometry preserving algorithms can be more effective in these
applications.

(2) Build connections between the input data sets. To align different
input manifolds, it is required to build the connections between the
points sampled from the input manifolds. Many existing ap-
proaches build the connections using the manifold structures
[7,16,24] or the given correspondence information [8,9,19,28].

(3) Map all input data sets into a common low-dimensional embed-
ding space. Manifold alignment approaches try to map all the
points to the same space preserving the discovered manifold
structure and connections. In general, the manifold alignment
approaches can be done at instance-level or feature-level. Instance-
level alignment [22] computes the embedding coordinates of the
data points. Feature-level alignment [23,26] computes the map-
ping functions that map the input data sets to the latent space.
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Since the mapping functions can be easily generalized to new test
points, feature-level alignment outperforms instance-level align-
ment on handling the new test points.

A key issue that determines the effectiveness of the manifold
alignment approaches is how to accurately build connections between
the input data sets. Since the points from different data sets are
represented by different features, it is difficult to compare them
directly. There are some efforts on solving this problem. One line is
to build the connections using their local on-manifold structures such
as the distance matrix of [24] and parameterized curve representation
[16]. Using the manifold structures rather than the original features to
represent the data points makes it possible to compare the points from
different data sets directly. However, the true match may be difficult to
identify since the manifolds may have multiple similar manifold
structures. The effectiveness of these approaches may be very limited
in this situation. The other line is to build the connections using the
given correspondence information such as pairwise correspondences
[9], relative comparison information [27] or label information [25].
These approaches can have good performance when sufficient prior
information is available. Consider the fact that the data sets from real-
world often have very limited prior information, the applications of
these approaches are also greatly limited.

The purpose of this paper is to address the key issue. Assume that
very limited correspondence information such as few pairwise corre-
spondences is given. For each point xi, we use the geodesic distances
along the manifold between xi and the correspondences to characterize
xi's manifold structure. Using global geometry rather than local
geometry to characterize the manifold structure can avoid the false
positive matchings. To build the connections between the points from
different data sets, the similarities between the characterized manifold
structure are computed. The data points from each data set are then
mapped to a common space at instance-level or feature-level by solving
a constrained embedding function, simultaneously preserving the
manifold topology and discovered connections.

The rest of this paper is organized as follows. In Section 2, we
propose a novel semi-supervised manifold alignment algorithm when
only few pairwise correspondences are given. We also give a theory
analysis of the proposed algorithm in Section 3. After that, the related
work will be introduced in Section 4. We will give numerical experi-
ments in Section 5 to show the effectiveness of the proposed manifold
alignment algorithm. Some conclusion remarks are given in Section 6.

2. The Main algorithm

Given two data sets X x x= [ ,…, ]n1 and Y y y= [ ,…, ]m1 with
x R y R∈ , ∈i

p
j

px y, sampled from two d-dimensional manifolds and
. For the semi-supervised manifold alignment problem, it is assumed

that the pairwise correspondences of some of the sample points are
given. Without loss of generality, suppose the first l points in X and Y
are the pairwise correspondences, i.e., x y i l↔ , = 1,…,i i . The purpose
of our proposed algorithm is to learn the embedding coordinates
s s s R= [ ,…, ] ∈n
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× of Y, or the linear

projection function f R g R∈ , ∈p d p d× ×x y such that the embedding
results fTX and gTY preserve local geometries of the input manifolds
and the connections between manifolds.

2.1. The optimization model

The graph Laplacian is widely used in dimensionality reduction due
to its nice properties. The graph Laplacian based methods such as
Laplacian eigenmaps [2] construct a weighted graph to capture the
local geometry in the manifold. For the points x x,…, n1 sampled from
the manifold , Laplacian eigenmaps construct an n n× weight matrix

W to summary the similarity between points, i.e., W e=i j,
−

xi xj
t

∥ − ∥2

with

t being the heat kernel parameter or W = 1i j, for simplicity when xi and

xj are neighbors, otherwise W = 0i j, . Then Laplacian eigenmaps con-
struct s s s= [ ,…, ]n1 to minimize the function
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where tr(·) denotes the trace of the matrix, L D W= − is the graph

Laplacian matrix, and D is a diagonal matrix with D W= ∑i i j i j, , .

Similarly, we can construct the graph Laplacian matrix L for the data
sampled from the manifold . In our model, we use the graph
Laplacian to capture the local geometries of the input manifolds.

In order to preserve the local geometries of each manifold and the
connections between xi and yj, we want to minimize the cost function
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where Wi j, represent the similarity between xi and yj. We will propose a
novel approach to determine Wi j, in the next subsection. The first two
terms guarantee that the learned local geometries can be preserved in
the embedding space, while the third term penalizes the difference
between the embedding coordinates of the data sets X and Y. λ is a
tradeoff parameter. Notice that W s t∑ ∥ − ∥i j i j i j, ,
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where D D,r c are the diagonal matrices with
D W D W= ∑ , = ∑i i

r
j i j j j

c
i i j, , , , . The cost function (1) can be rewritten as

C s t sL s tL t λ sD s sWt tD t

s t L λD λW
λW L λD

s
t

( , ) = tr( ) + tr( ) + (tr( ) − 2 tr( ) + tr( ))

= tr [ ] + −
− +

.

T T r T T c T

r

T c

T

T

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ (2)

Denote

L L λD λW
λW L λD

D D
D

y s t= + −
− +

, = 0
0

, = [ ].
r

T c

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (3)

It is easy to follow that D L= ∑ii j ij. And the cost function (2) can be
rewritten as

C y yLy( ) = tr( ).T (4)

To remove an arbitrary scaling factor in the embedding, the constraint
yDy I=T is generally imposed on the cost function. Then the embed-
ding coordinates of X and Y can be obtained by computing d
eigenvectors y y,…,T

d
T

1 corresponding to the d smallest eigenvectors of
the generalized eigenvalue decomposition

Ly γDy= .T T (5)

The embedding results s and t can be obtained from the top n and the
next m columns of y y y= [ ,…, ]T

d
T T

1 .
In the cost function (2), it directly computes the embedding results

s and t rather than the mapping functions f and g. And it is difficult to
handle new points. To learn the linear mapping function f g, , the
constraints s f X= T and t g Y= T can be imposed on (2), i.e.
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