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A B S T R A C T

Extreme learning machine (ELM) for regression has been used in many fields because of its easy-implementa-
tion, fast training speed and good generalization performance. However, basic ELM with ℓ2-norm loss function
is sensitive to outliers. Recently, ℓ1-norm loss function and Huber loss function have been used in ELM to
enhance the robustness. However, the ℓ1-norm loss function and the Huber loss function can also be effected by
outliers because of their linear correlation with the errors. Moreover, existing robust ELM methods only use ℓ2-
norm regularization or have no regularization term. In this study, we propose a unified model for robust
regularized ELM regression using iteratively reweighted least squares (IRLS), and call it RELM-IRLS. We
perform a comprehensive study on the robust loss function and regularization term for robust ELM regression.
Four loss functions (i.e., ℓ1-norm, Huber, Bisquare and Welsch) are used to enhance the robustness, and two
types of regularization (ℓ2-norm and ℓ1-norm) are used to avoid overfitting. Experiments show that our proposed
RELM-IRLS with ℓ2-norm and ℓ1-norm regularization is stable and accurate for data with 0 ∼ 40% outlier levels,
and that RELM-IRLS with ℓ1-norm regularization can obtain a compact network because of the highly sparse
output weights of the network.

1. Introduction

The extreme learning machine (ELM) [1] is proposed for training
single-hidden layer feedforward networks (SLFNs). It directly approx-
imates nonlinear mapping of input data by randomly generating the
hidden node parameters without tuning. This model has been proven to
exhibit the universal approximation capability [2]. ELM has the follow-
ing merits: (1) easy-implementation, (2) extremely fast training speed,
(3) good generalization performance. ELM has recently gained increas-
ing interest in regression problems, such as stock market forecasting [3],
electricity price forecasting [4], wind power forecasting [5], affective
analogical reasoning [6], because of the aforementioned merits.

The performance of ELM regression crucially relies on the given
labels of training data. The basic ELM with the ℓ2-norm loss function
assumes that the training labels is a normal error distribution.
However, training samples for real tasks cannot be guaranteed to have
a normal error distribution. Many factors can corrupt the training
samples with outliers, such as instrument errors, sample errors and
modeling errors. The performance of basic ELM regression is heavily
deteriorated because ℓ2-norm loss can be easily effected by the large
deviations of the outliers.

To solve this problem, Deng et al. [7] proposed a regularized ELM
with weighted least square to enhance the robustness. Their algorithm
consists of two stages of the reweighted ELM. Zhang et al. [8] proposed
the outlier-robust ELM with the ℓ1-norm loss function and the ℓ2-norm
regularization term. They used augmented Lagrange multiplier algo-
rithm to solve the objective loss function and effectively reduced the
influence of outliers. Horata et al. [9] adopted the Huber function to
enhance the robustness. They used iteratively reweighted least squares
(IRLS) algorithm to solve the Huber loss function without a regular-
ization term. The model without regularization is easy to overfit.

However, the loss functions of existing robust ELM regression,
namely, ℓ1-norm or Huber function, can also be effected by the outliers
with large deviations because ℓ1-norm or Huber loss functions are
linear with the deviations. Moreover, existing robust ELM methods use
only ℓ2-norm regularization or have no regularization term. When the
number of hidden nodes is large, the ℓ2-norm regularization will train a
large ELM model due to non-zero output weights of the network. In a
word, there lacks a study that considers different loss functions and
regularization terms simultaneously.

Thus, we conduct a comprehensive study on the loss function and
regularization term of the robust ELM regression in this work. We
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propose a unified model for robust regularized ELM regression using
IRLS (RELM-IRLS). Four loss functions (i.e., ℓ1-norm, Huber, Bisquare
and Welsch) are used to enhance the robustness, and two types of
regularization (ℓ2-norm and ℓ1-norm) are used to avoid overfitting.
These loss functions, also known as M-estimation functions, have been
widely used in robust statistics [10]. IRLS is used to optimize the
objective function with robust loss function and regularization term.
Each IRLS iteration is equivalent to solving a weighted least-squares
ELM regression. Our RELM-IRLS algorithm can also be trained
efficiently because of the fast training speed of ELM. The experimental
results on synthetic and real data sets show that our proposed RELM-
IRLS is stable and accurate at 0 ∼ 40% outlier levels.

Compared to existing ELM methods for robust regression, the main
contributions of this paper are highlighted as follows:

(1) A unified model is proposed for robust regularized ELM regres-
sion. Different kinds of robust loss functions and regularization
terms can be used in this model.

(2) RELM-IRLS with ℓ2-norm regularization is proposed to achieve
better generalization.

(3) RELM-IRLS with ℓ1-norm regularization is proposed to realize
better generalization performance and more compact network
architecture.

The rest of this paper is organized as follows. Basic ELM and its
robust variants are reviewed in Section 2. In Section 3, we present the
unified model and the RELM-IRLS with ℓ2-norm regularization and ℓ1-
norm regularization. Section 4 demonstrates the experimental results
of our proposed algorithms and Section 5 presents our conclusion.

2. Background and related works

2.1. ELM for regression

For a given set of training samples  S y i Nx= {( , )| =1 ,.., }⊂ ×i i d( ) ( )

for regression problem, ELM is a unified SLFN whose output with L
hidden nodes can be represented as
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the hidden layer function g ba x( , , )i i between the input layer and the ith
hidden node. ai and bi are randomly generated independent of the
training data. βi is the output weight between the ith hidden node to
the output node. The computational hidden nodes can be sigmoid
function, additive and radial basis function(RBF) hidden nodes,
hinging functions, wavelets, and so on. For example,
g b σ ba x a x( , , ) = ( + )i i i i

⊤ where σ is the sigmoid function. To minimize
the least square error, we can get the objective loss function:
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The solution for Eq. (2) is provided by Huang et al. [1] as
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where the two forms of β are equivalent based on Woodbury identity
[11].

ELM is easy to overfit based on the empirical risk minimization
(ERM) principle in Eq. (2). In [12] and [13], a regularized ELM is
proposed to consider Structural Risk Minimization (SRM) rather than
ERM only. The complexity of ELM is controlled by restricting the

output weights β to small values. Thus, the objective function is
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where C is the regularization parameter that trades off the norm of
output weights and least squares training errors. According to [12], the
solution of Eq. (4) is
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2.2. Robust ELM for regression

Deng et al. [7] proposed a regularized ELM with weighted least
square to enhance the robustness. Their algorithm consists of two
stages. A regularized ELM is trained in the first stage. Then, the weights
of samples are calculated by the residual errors of the first model and
the regularized ELM is retrained using the weighted samples during the
second stage. This algorithm can be simply regarded as two iteration
version of the iteratively reweighted method. This method may not get
a convergence of only two iterations. In our method, we take the full
iterations of IRLS to achieve better performance.

Horata et al. [9] proposed three robust ELM algorithms: (1) ELM
based on the IRLS, where the weights of samples are iteratively
recalculated by prior residual errors; (2) ELM based on the multi-
variate least rimmed squares (MLTS-ELM), where a subset of noisy
training data is selected by minimum covariance determinant (MCD)
estimator; and (3) ELM based on one-step reweighted MLTS (RMLTS-
ELM), where the reweighted version of MLTS is used. The first
algorithm is very similar to our proposed algorithm. However, it uses
only one M-estimate function (i.e. Huber function) and lacks a
regularization term. In our algorithm, more robust loss functions,
namely, Bisquare and Welsch function are used. In addition, we used
two kinds of regularization, namely, ℓ2-norm and ℓ1-norm regulariza-
tion.

Zhang et al. [8] proposed an outlier-robust ELM, which adopted the
ℓ1-norm loss function to enhance the robustness and ℓ2-norm regular-
ization term to achieve good generalization. An augmented Lagrange
multiplier algorithm based on the alternating direction technique was
used to solve the objective loss function. Although the ℓ1 loss function
was robust to outlier, but it will still be effected by the outliers because
it is linear with error. In our algorithm, more robust M-estimate loss
functions are used, which can reduce the effects of larger errors of
outliers.

3. Proposed method

In this section, we explain our proposed RELM-IRLS algorithm.
First, we provide a unified model for robust regularized regression.
Then, we present the RELM-IRLS with ℓ2-norm and ℓ1-norm regular-
ization respectively. Finally, we discuss the advantages and disadvan-
tages of our proposed method.

3.1. A unified model for robust regularized ELM regression

Given a regression data set  S y i Nx= {( , )| = 1 ,.., } ⊂ ×i i d( ) ( ) , the
objective loss function of ELM has the general form:

∑r β C β yh xmin: ( ) + ℓ( ( ) , )
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where β ∈ L is the output weight vector,  r(·): →L is a regulariza-
tion function, and   ℓ(·, ·): × → is a loss function. The parameter
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