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a  b  s  t  r  a  c  t

The  theoretical  studies  of differential  evolution  algorithm  (DE)  have  gradually  attracted  the  attention
of more  and  more  researchers.  According  to  recent  researches,  the  classical  DE  cannot  guarantee  global
convergence  in  probability  except  for  some  special  functions.  Along  this  perspective,  a  problem  aroused
is  that  on  which  functions  DE  cannot  guarantee  global  convergence.  This  paper  firstly  addresses  that
DE  variants  are  difficult  on  solving  a  class  of  multimodal  functions  (such  as  the  Shifted  Rotated  Ackley’s
function)  identified  by two characteristics.  One  is  that  the global  optimum  of the  function  is  near  a
boundary  of  the  search  space.  The  other  is that the  function  has a larger  deceptive  optima  set  in  the  search
space.  By  simplifying  the class  of  multimodal  functions,  this  paper  then  constructs  a Linear  Deceptive
function.  Finally,  this  paper  develops  a random  drift  model  of the  classical  DE  algorithm  to  prove  that
the  algorithm  cannot  guarantee  global  convergence  on the  class  of  functions  identified  by  the  two  above
characteristics.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The differential evolution algorithm (DE) proposed by Storn and
Price in 1995 [1] is a population-based stochastic parallel evo-
lutionary algorithm. DE emerged as a very competitive form of
evolutionary computing [2–4] and has got many practical applica-
tions, such as function optimization, multi-objective optimization,
classification, scheduling and so on.

Since that theoretical studies benefit understanding the algo-
rithmic search behaviors and developing more efficient algorithms,
more and more researchers pay attention to the theoretical stud-
ies on DE with the popularity in applications. In 2005, Zielinski
et al. [5] investigated in theory the runtime complexity of DE for
various stopping criteria including a fixed number of generations
(Gmax) and maximum distance criterion (MaxDist). From 2001 to
2010, Zaharie [6–11], Dasgupta et al. [12,13] and Wang et al. [14]
analyzed the dynamical behavior of DE’s population from different
perspectives, i.e., the statistics characteristics, the gradient-descent
type search characteristics and stochastic evolving characteris-
tics respectively. Recently some convergent DE algorithms [15–19]
have developed.
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This paper focuses on the convergence analyses of the classical
DE. Several important conclusions on the convergence have been
drawn. In 2005, Xu et al. [20] performed a mathematical modeling
and convergence analysis of continuous multi-objective differen-
tial evolution (MODE) under certain simplified assumptions, and
this work was extended in [21]. In 2012, Ghosh and Das et al. [22]
used Lyapunov stability theorem to establish the asymptotic con-
vergence behavior of a classical DE (DE/rand/1/bin) algorithm on
a class of special functions identified by the following two proper-
ties, 1) the function has the second-order continual derivative in
the search space, and 2) it possesses a unique global optimum in
the range of search. In 2013, Hu et al. [23] proposed and proved
a sufficient condition for global convergence of the modified DE
algorithms. In 2014, Hu et al. [24] developed a Markov chain model
of the classical DE and proved then that it cannot guarantee global
convergence in probability. In a word, the classical DE cannot guar-
antee global convergence in probability except for some special
functions.

Along this perspective, this paper does two  works as follows:

• Firstly, this paper addresses that DE variants are difficult to solve
a class of multimodal functions. By abstracting the characteris-
tics of the class of functions, this paper then constructs a Linear
Deceptive function which can simplify the theoretical analyses
on DE.
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• This paper develops a random drift model of the classical DE
algorithm to prove the conclusion that the algorithm cannot guar-
antee global convergence on a class of functions represented by
the Linear Deceptive function.

The rest is organized as follows. Section 2 introduces the classi-
cal DE algorithm. As the research background of this paper, Section
3 presents a problem that many DE variants are difficult to solve a
class of multimodal functions. Section 4 qualitatively analyzes the
reason resulting the problem by using distribution characteristics
of the trial population, and offers the proof idea of the main con-
clusion in the following sections. Sections 5 and 6 prove the main
conclusion that the classical DE cannot guarantee global conver-
gence on a class of multimodal functions by constructing a Linear
Deceptive function and developing a random drift model of the clas-
sical DE. Finally the concluding remarks are presented in Section
7.

2. Classical differential evolution

DE is used for dealing with the continuous optimization prob-
lem. We  suppose in this paper that the objective function to be
minimized is f (�x), �x = (x1, . . .,  xn) ∈ Rn, and the feasible solution
space is � =

∏j=n
j=1[Lj, Uj]. The classical DE [1,3,26] works through a

simple cycle of operators including mutation, crossover and selec-
tion operator after initialization. The classical DE procedures are
described in detail as follows.

2.1. Initialization

The first step of DE is the initialization of a population of m
n-dimensional potential solutions (individuals) over the optimiza-
tion search space. We  shall symbolize each individual by �xg

i
=

(xg
i,1, xg

i,2, . . .,  xg
i,n

), for i = 1, . . .,  m,  where g = 0, 1, . . .,  gmax is the cur-
rent generation and gmax is the maximum number of generations.
For the first generation (g = 0), the population should be sufficiently
scaled to cover the optimization search space as much as possible.
Initialization is implemented by using a random number distribu-
tion to generate the potential individuals in the optimization search
space. We  can initialize the jth dimension of the ith individual
according to

x0
i,j = Lj + rand(0, 1) · (Uj − Lj)

where rand(0, 1) is a uniformly distributed random number con-
fined in the [0,1] range.

2.2. Mutation operators

After initialization, DE creates a donor vector �vg
i

corresponding
to each individual �xg

i
in the gth generation through the mutation

operator. Several most frequently referred mutation strategies are
presented as follows:

DE/rand/1:

�vg
i

= �xg
r1

+ F(�xg
r2

− �xg
r3

);

DE/best/1:

�vg
i

= �xg
best

+ F(�xg
r1

− �xg
r2

);

DE/current-to-best/1:

�vg
i

= �xg
i

+ F(�xg
best

− �xg
i
) + F(�xg

r1
− �xg

r2
);

DE/best/2:

�vg
i

= �xg
best

+ F(�xg
r1

− �xg
r2

) + F(�xg
r3

− �xg
r4

);

DE/rand/2:

�vg
i

= �xg
r1

+ F(�xg
r2

− �xg
r3

) + F(�xg
r4

− �xg
r5

);

where �xg
best

denotes the best individual of the current generation,
the indices r1, r2, r3, r4, r5 ∈ Sr = {1, 2, . . .,  m}  \ { i } are uniformly
random integers mutually different and distinct from the running
index i, and F ∈ (0, 1] is a real parameter, called mutation or scaling
factor.

If the jth element of �vi is infeasible (i.e. out of the boundary), it
is reset as the following rule, called Symmetrical Mode Rule.

vi,j =
{

2Lj − vi,j if vi,j < Lj

2Uj − vi,j if vi,j > Uj

2.3. Crossover operator

Following mutation, the crossover operator is applied to further
increase the diversity of the population. In crossover, the target
vectors, �xg

i
, are combined with elements from the donor vector, �vg

i
,

to produce the trial vector, �ug
i
, using the binomial crossover,

ug
i,j

=
{

vg
i,j

if rand(0,  1) ≤ CR or j = jrand

xg
i,j

otherwise

where CR ∈ (0, 1) is the probability of crossover, jrand is a random
integer in [1,n].

2.4. Selection operator

Finally, the selection operator is employed to maintain the most
promising trial individuals in the next generation. The classical DE
adopts a simple selection scheme. It compares with the objective
values of the target �xg

i
and trial �ug

i
individuals. If the trial individual

reduces the value of the objective function then it is accepted for
the next generation; otherwise the target individual is retained in
the population. The selection operator is defined as

�xg+1
i

=
{

�ug
i
, if f (�ug

i
) < f (�xg

i
)

�xg
i
, otherwise.

The pseudocode of the classical DE (DE/rand/1) is illustrated in
Fig. 1

Fig. 1. Pseudocode of classical DE (DE/rand/1).
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