
Author's Accepted Manuscript

Global Lagrange stability for inertial neural networks with mixed time-varying delays

Jingfeng Wang, Lixin Tian

www.elsevier.com/locate/neucom

PII: S0925-2312(17)30011-5

http://dx.doi.org/10.1016/j.neucom.2017.01.007 DOI:

NEUCOM17900 Reference:

To appear in: **Neurocomputing**

Received date: 21 June 2016 Revised date: 20 October 2016 Accepted date: 1 January 2017

Cite this article as: Jingfeng Wang and Lixin Tian, Global Lagrange stability for inertial neural networks with mixed time-varying delays, Neurocomputing http://dx.doi.org/10.1016/j.neucom.2017.01.007

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Global Lagrange stability for inertial neural networks with mixed time-varying delays

Jingfeng Wang^{a,b}, Lixin Tian^{a,c,*}

^aFaculty of Science, Jiangsu University, Zhenjiang 212013, China ^bSchool of Mathematical Sciences, Huaiyin Normal University, Huaian, 22300, China ^cSchool of Mathematical Sciences, Nanjing Normal University, Nanjing, 210046, China

Abstract

This paper concerns with the global Lagrange stability of inertial neural networks with discrete and distributed time-varying delays. By choosing a proper variable substitution, the inertial neural networks can be rewritten as a first-order differential system. Based on the Lyapunov functional method, inequality techniques and analytical method, several sufficient conditions are derived to guarantee the global exponential stability of the inertial neural networks in Lagrange sense. Meanwhile, the global exponential attractive set is also given. Simulation results demonstrate the effectiveness of the theoretical results.

Keywords: inertial neural networks, Lagrange stability, time-varying delay, global exponential attractive set.

1. Introduction

In recent years, neural networks have been successfully applied in many fields such as pattern recognition, associative memories, signal processing, fixed-point computations, and so on. Therefore, the study of neural networks has received considerable attention during the past decades, and various issues of neural networks [1–8] have been investigated and many important results on the dynamical behaviors have been reported. Noticing that lots

Email address: tianlx@ujs.edu.cn (Lixin Tian)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/4947851

Download Persian Version:

https://daneshyari.com/article/4947851

Daneshyari.com