
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A projection type steepest descent neural network for solving a class of
nonsmooth optimization problems

M.J. Ebadia, Alireza Hosseinib,c,⁎, M.M. Hosseinia

a Department of Mathematics, Yazd University, P.O. Box 89195-741, Yazd, Iran
b School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14115-175, Tehran, Iran
c School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

A R T I C L E I N F O

Communicated by Ding Wang

Keywords:
Recurrent neural network
Nonsmooth optimization
Global convergence
Stability
Differential inclusion
Solution trajectory.

A B S T R A C T

In this paper, a new one layer recurrent neural network is proposed to solve nonsmooth optimization problems
with nonlinear inequality and linear equality constraints. Model is based on a differential inclusion and
combines steepest descent and gradient projection methods simultaneously. Any solution trajectory of the
introduced differential inclusion converges globally to the optimal solution set of the corresponding optimiza-
tion problem. Comparing with the existing models for solving nonsmooth optimization problems, there does not
exist any penalty parameter in the structure of the new model and the model has simple structure. Moreover,
the optimal solution of the original optimization problem is equivalent to the equilibrium point of the proposed
neural network. Some illustrative examples are presented to show the effectiveness and performance of the
proposed neural network.

1. Introduction

Consider the following constrained nonlinear optimization pro-
blem:

f x g x i m Ax bmin ()subject to () ≤ 0, = 1,…, = ,i (1)

where x x x x= (, ,…,) ∈n
T n

1 2  is the vector of decision variables,
f : →n  is a locally Lipschitz function which is not convex generally
and may be nonsmooth and g x g x i m() = max{ ()| = 1,…, }i , where
g i m(= 1, 2,…,): →i

n  are nonsmooth functions. Assume g is con-
vex (note that if gis are convex functions, then g is convex too).
A R∈ n m× is a full row-rank matrix (i.e. rank(A) m n= ≤) and
b b b b R= (, ,…,) ∈ .m

T m
1 2 Ω x R g x Ω x R Ax b= { ∈ : () ≤ 0}, = { ∈ : = }n n

1 2
and Ω Ω Ω= ⋂1 2 is the feasible region of problem (1). Moreover assume
that the objective function f is convex over Ω1 (convexity of f over nR is
not needed). It means that the problem (1)can be a nonconvex
programming problem.

Obviously, problem (1) is equivalent to the following problem:

f x g x Ax bmin ()subject to () ≤ 0, = . (2)

Constrained optimization problems have many applications in science
and engineering such as robot control, optimal control, signal processing,
manufacturing system design and pattern recognition [1–6]. Real-time
solutions of the optimization problems are often needed. Applying

recurrent neural networks to solving dynamic optimization problems is
one of the possible and very promising approaches. Among parallel
computational models for solving constrained optimization problems,
recurrent neural networks have been utilized and received a great deal of
attention over the past recent decades (e.g., see [7–10] and references
therein). In 1986, as a first attempt, a recurrent neural network model
based on gradient method proposed by Tank and Hopfield [7] for solving
linear programming problems. The design and applications of recurrent
neural networks for optimization have been widely investigated. For
example Kennedy and Chua [8] presented a neural network for solving
nonlinear programming problems. The structure of the proposed neural
network model is based on Newton-type descent, which contains finite
penalty parameters and generates only approximate solutions. If the
penalty parameter is chosen very large, a significant problem will arise
for such neural network. From then on, many neural networks have been
proposed and well developed for solving various kinds of optimization
problems. For example, Lagrangian neural networks which are constructed
to solve nonlinear programming problems with equality constraints
[11,12], a projection-type neural network which is designed to solve
nonlinear convex programming problems [13], a generalized neural net-
work [10] and so on. Moreover, many other methods have been proposed
in recent years to avoid using penalty parameters (e.g., see [14–17]). Xia
and Wang [18] introduced a recurrent neural network to solve nonlinear
convex programming with nonlinear inequality constraints without using

http://dx.doi.org/10.1016/j.neucom.2017.01.010
Received 29 April 2016; Received in revised form 24 November 2016; Accepted 3 January 2017

⁎ Corresponding author at: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14115-175, Tehran, Iran.
E-mail addresses: hosseini.alireza@ut.ac.ir, a.r_hosseini@khayam.ut.ac.ir (A. Hosseini).

Neurocomputing (xxxx) xxxx–xxxx

0925-2312/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Ebadi, M.J., Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.01.010

http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2017.01.010
http://dx.doi.org/10.1016/j.neucom.2017.01.010
http://dx.doi.org/10.1016/j.neucom.2017.01.010

any penalty parameter. Any solution state of the neural neural network
when the objective function is convex and all constraint functions are
strictly convex is globally convergent to exact optimal solutions in finite
time. To prevent the strict condition on the constraint function in [18],
Yang and Cao [19] extended the proposed neural network in [18] under the
convexity assumptions of the objective and constraint functions. Moreover,
we can point to a projection-type neural network which is proposed by Gao
[14] for solving nonlinear convex programming problems with bound
constraints. Among optimization problems, nonsmooth ones are attractive
for researchers because of their important role in engineering applications,
such as manipulator control, sliding mode, signal processing and so on (see
[20–23] and the references therein). To speak generally, solving this kind of
problems is difficult even in unconstrained cases. Forti et al. [10] proposed
a generalized neural network for solving a much wider class of nonlinear
nonsmooth programming problems with inequality constraints in real time
which is an extension of the Kennedy and Chua's network [8] from smooth
to nonsmooth case and described by a differential inclusion. The model is
based on penalty method and the solution trajectories converge only when
the penalty parameter tends to infinity. Xue and Bian [24,25] extended the
neural network presented in [10] for nonsmooth convex and nonconvex
optimization problems containing inequality and affine equality constraints
based on the subgradient and penalty parameter methods. A recurrent
neural network for nonsmooth convex optimization problem with a larger
class of constraints has been proposed by Cheng et al. [26] which is not
based on any penalty parameter, but with a complex structure. To reduce
the model complexity, some recurrent neural networks have been proposed
for solving nonsmooth convex optimization problems with linear equality
[27], bound [28] and both linear equality and bound constraints [29].
Recently, Liu andWang [30] and Qin and Xue [31] presented one layar and
two layer neural network models to solve nonsmooth optimization problem
(1) respectively. In [30] the authors proposed a model with penalty
parameters in its structure. To guarantee convergence of the state variables
to optimal solution set, some assumptions on inequality constraints are
needed. Moreover, in order to determine a suitable penalty value we should
estimate an upper bound of the Lipschitz constants of the constraint
functions over a compact set. Recently, Hosseini et al. [32] proposed a
recurrent neural network to solve pseudoconvex optimization problems.
The model is a penalty-based method and convergence to optimal solution
can be guaranteed only under some limiting assumptions. Moreover, a
steepest descent neural network model has been proposed in [33]. This
model can be applied for optimization problems with nonsmooth and
nonlinear inequality constraints. This neural network model is not penalty
based. However we can not use this method to solve problems with linear
equality constraints. To overcome the above difficulties and reduce the
model complexity, in this paper, we propose a new one layer recurrent
neural network to solve a class of nonlinear nonsmooth optimization
problems with nonlinear inequality and linear equality constraints.
Objective function can be nonconvex, however it must be convex over the
region Ω1. The model is based on a differential inclusion and applies
gradient projection and steepest descent approaches in its structure. We
prove the global convergence of the proposed neural network and show the
stability of the dynamical system. In the structure of the newmodel, there is
not any penalty parameter, therefore starting by any initial state, solution
trajectory of the designed differential inclusion converges to an element of
the optimal solution set of the corresponding optimization problem. The
reminder of the paper is organized as follows: The related preliminaries and
some definitions are given in Section 2. In Section 3, the neural network
model for solving optimization problem (2) is constructed. We prove the
stability and globally convergence of the proposed neural network in
Section 4. Some illustrative examples are given in Section 5. Analog circuit
for the proposed neural network is designed in Section 6. Finally, in Section
7 some conclusions are presented.

2. Preliminaries

We present some definitions and lemmas for the convenience of the
later discussion. Throughout this paper, · 1 and · 2 denote l1 and l2
norms of a vector in n , respectively.

Definition 2.1. [34] Suppose that X and Y are two sets. A map F from
X to Y is said a set valued map, if it associates a subset F(x) of Y with
any x X∈ .

Definition 2.2. [34] A set valued mapF with nonempty values is
upper semicontinuous (U.S.C.) at x X∈ ,0 if for any open set N
containing F x()0 there exists a neighborhood M of x0, such that
F M N() ⊂ . Also, F is U.S.C. if it is U.S.C. at every x X∈0 .

Definition 2.3. [34] A function f : →n  is said to be Lipschitz near
x ∈ n , if for any given ϵ > 0 there exists δ > 0, such that for any
x x, ∈ n

1 2  , satisfying x x δ− <1 2 and x x δ− <2 2 , we have
f x f x x x| () − ()| ≤ ϵ −1 2 1 2 2. We say that f is locally Lipschitz on n , if
f is Lipschitz near any point x ∈ n .

Definition 2.4. [35] Suppose that f is Lipschitz near x ∈ n . The
generalized directional derivative of f at x in the direction of any vector
v ∈ n , is given by

f x v f y tv f y
t

(;) = lim sup (+) − (),
y x t

0

→ , ↓0

and the Clarke generalized gradient of f at x is defined as

f x y f x v y v v∂ () = { ∈ : (;) ≥ , ∀ ∈ }.n T n0 

Definition 2.5. [35] A function f, which is locally Lipschitz near
x ∈ n , is called regular at x if we have

(1) for any direction v ∈ n , the one-sided directional derivative
f x v′(;) which is given by

f x v f y ξv f y
ξ

′(;) = lim (+) − (),
ξ→0+

exists;

(2) for all v, f x v f x v′(;) = (;).0

Lemma 2.6 (Chain rule Clarke [35]). If W: →n  is regular at x(t),
x t(): → n  is differentiable at t and Lipschitz near t, then

W x t ξ x t ξ W x t for a e ṫ (()) = < , ̇() > , ∀ ∈ ∂ (()) . . ∈ [0, ∞).

where <·,·> denotes the inner product.

3. Neural network model

3.1. Neural network structure

Assumption 3.1. One of the following assumptions holds:

(a) There exists at least one optimal solution of problem (2) at the
interior of the region Ω1.

(b) g is strictly convex over Ω1.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then, x* is an
optimal solution of problem (2), if there exists y R* ∈ m such that
x y(*, *) satisfies the following equations

T x A y

Ax b

0 ∈ (*) − *,

0 = * − .

T

(3)

Where T x Ψ g x η γ η η f x γ g x(*) = { ((*))[−] − : ∈ ∂ (*), ∈ ∂ (*)} (for sim-
plicity we write T x Ψ g x f x g x f x(*) = ((*))[∂ (*) − ∂ (*)] − ∂ (*)) and

M.J. Ebadi et al. Neurocomputing (xxxx) xxxx–xxxx

2

Download	English	Version:

https://daneshyari.com/en/article/4947854

Download	Persian	Version:

https://daneshyari.com/article/4947854

Daneshyari.com

https://daneshyari.com/en/article/4947854
https://daneshyari.com/article/4947854
https://daneshyari.com/

