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A B S T R A C T

Distributed consensus tracking for the fractional-order multi-agent systems is mainly studied in this paper.
Firstly, the simple Lyapunov candidate function is discussed to judge the validity of the proposed controller.
Secondly, according to the sliding mode control method, a controller is designed to achieve the consensus
tracking problem when the followers are described by the fractional-order linear dynamics. Thirdly, the case
when the dynamics of followers own the intrinsic nonlinear function is discussed, it proves that the designed
sliding mode controller is still valid for this case under the certain conditions. For the above two parts, the
systems stabilities are judged based on the result of the first part. Finally, several simulations are presented to
verify the obtained results.

1. Introduction

Distributed coordination control means that agents work in a
cooperative fashion through decentralized controllers with local in-
formation and limited inter-agent communication. In recent year, the
study on distributed coordination control has drawn great attention
due to its advantages, such as low operational costs, high robustness,
flexible scalability and so on. Consensus plays an important role in the
study of distributed coordination control due to its broad applications,
which include sensor networks, multi-robots, multiple satellites and so
on [1–4].

As one important part, consensus tracking has become very popular
in many fields, such as biotic population, formation flocking, body
guard and so on [5]. Consensus tracking represents that all followers
can asymptotically track one leader (or a group of leaders). Up to now,
many results have been given on the consensus tracking problem based
on the integer-order systems. For instance, the problem has been
studied from single-integrator systems to double-integrator systems
[6–8]. In addition, various controllers have been designed according to
different methods [9–11]. Moreover, uncertain models, time-delay,
external noisy have been widely investigated due to the existence of
external disturbances when agents work in different environments
[12–14]. However, lots of systems cannot be described by integer-order

systems when the work environments for agents are complex, for
example, the undersea with a large number of viscous substances or
microorganisms for the underwater robots, the complex space with lots
of particles for the unmanned aerial vehicles and so on [15]. While
fractional-order systems show the systems characteristics very well in
various fields due to its powerful memory and hereditary properties
[5,16–18].

Because of the potential applications of the fractional-order systems
in the coordination control, the fractional-order multi-agent systems
has been studied since 2008 in [15], where the key focus is the
consensus problem. Then, researchers have focused on the study of
consensus producing without a leader [19,20], at the same time,
external disturbances, time delay, uncertain systems have also been
considered [21–23]. Moreover, various control approaches have been
given to investigate the consensus problem, which contain fractional-
order PID control [19], adaptive control [24], event triggering control
[25] and so on. For the control approaches, the sliding mode control
method is well known for its robustness against system external
disturbance and model uncertainty, and the method can realizes
system control fast. It has been widely used to study the control
problem both for integer-order systems [26] and fractional-order
systems [27,28]. For example, due to the additional design parameters
for tuning, fractional-order sliding mode method has been developed
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for wind energy systems,lighting control systems, photovoltaic systems
and so on. However, in the study of the fractional-order multi-agent
systems, there is no corresponding results using the sliding mode
control method.

In the study of the fractional-order multi-agent systems, the
stability plays a key role. For the fractional-order linear multi-agent
systems, different theories have been applied to judge the stability
[29,30]. However, because of the complexity of the nonlinear systems,
few theories can be used to judge the stability for the fractional-order
nonlinear multi-agent systems [31,32], where the Lyapunov direct
method for the fractional-order systems has been studied, which
provides a valid tool to judge the stability problem, but for this method,
the difficulty is to search an adaptive Lyapunov candidate function
[33,34].

Based on the above analysis, this paper will discuss the consensus
tracking problem for the fractional-order multi-agent systems, and the
sliding mode control method is applied to design the effective
controller. The main contributions can be presented as follows.
Firstly, a simple Lyapunov candidate function is studied, and it proves
that the key inequality for the differential of the Lyapunov candidate
function is satisfied. Secondly, when the dynamics of followers can be
shown by the fractional-order linear systems, it proves that the
designed sliding mode controller is valid to achieve the consensus
tracking under certain conditions. Thirdly, due to many complex
phenomena can be described by the nonlinear dynamics, hence, the
case when the dynamics of followers own the intrinsic nonlinear
function is investigated, it also proves that the above controller for
the consensus tracking is effective. Finally, several simulations are
proposed to prove the above results. Compared to the existed refer-
ences, the differences of this paper can be summarized as follows.
Firstly, comparing with the presented discrete Lyapunov candidate
functions in [33,24], a classic continuous Lyapunov candidate function
for the integer-order systems is extended to solve the stability problem
of the fractional-order nonlinear systems. Secondly, due to theory
deficiency, few results have been obtained on the distributed coordina-
tion of the fractional-order multi-agent systems. Based on the above
consideration, the paper designs an adaptive controller for the frac-
tional-order multi-agents systems, and then the distributed consensus
tracking can be guaranteed, which means that agents just receive
information from their neighbors, and track the leader eventually.
Thirdly, different from the designed linear controllers for the frac-
tional-order multi-agent systems in [33,34], the paper proposes an
effective nonlinear controller based on the sliding mode control
method.

We arrange the rest of the paper as follows. In Section 2, the
definition of the Caputo fractional derivative, the Lyapunov direct
method for the fractional-order systems and some existed results are
presented, respectively. In Section 3, a Lyapunov candidate function is
discussed, then, for the fractional-order multi-agent systems, the
distributed consensus tracking is investigated by using the sliding
mode control method. In Section 4, several simulations are drawn to
prove the acquired results. Finally, the paper is concluded in Section 5.

2. Preliminaries

2.1. Fractional calculus

For the fractional-order systems, the Caputo derivative definition
holds an important position, since its initial value can show the
practical physical significance. Hence, we will use Caputo fractional
derivative in the paper, it can be described as follows [5]:
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For Caputo fractional derivative, its Laplace transform plays an

important role, which can given as follows:
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Due to α ∈ (0, 1] is assumed in the paper, the Laplace transform can

be rewritten as follows:

L x t s X s s x α{ ( )} = ( ) − (0). ∈ (0, 1]α α α( ) −1 (2)

To judge the system stability, the Lyapunov direct method for the
integer-order systems was extended for the fractional-order nonlinear
systems in [31], which can be called as fractional-order Lyapunov
direct method for short.

Lemma 2.1 (Fractional-order Lyapunov direct method). The
fractional-order system is called Mittag-Leffler stable at the
equilibrium point x = (0, 0, …, 0)T if a continuously differentiable
function V t x t( , ( )) is existed, the following conditions are satisfied:
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where the locally Lipschitz condition on x is satisfied for
V t x t D R( , ( )): [0, + ∞) × → , D R⊂ n is a domain, which contains the
origin; t ≥ 0, α ∈ (0, 1), α α α c, , ,1 2 3 and d represent any positive
constants. x = (0, 0, …, 0) is globally Mittag-Leffler stable if the
assumptions hold globally on Rn, which implies that x is asymptotic
stability.Different from the classic Leibniz rule for the integer-order
systems, for the fractional-order systems, the rule can be is described
as follows.

Property 1. If f(t) and g(t) along with all its derivatives are
continuous in t t[ , ]0 , then for fractional differentiation, the Leibniz
rule takes the form:
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Note that, unlike the Leibniz rule of the classic integer-order
systems, the Leibniz rule for the fractional-order systems is complex,
which is not easy to be used for finding an adaptive Lyapunov
candidate function. Hence, according to the Lyapunov direct method
for the fractional-order systems, we will apply an adaptive Lyapunov
candidate function based on the following obtained inequalities [32].

Lemma 2.2. Let x t R( ) ∈ be a continuous and derivable function.
Then, for any time instant t t≥ 0
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Remark 2.3. Obviously, when x t R( ) ∈ n, the following relation is
satisfied:
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