
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Self-adaptive robust nonlinear regression for unknown noise via mixture of
Gaussians

Haibo Wanga, Yun Wangb,⁎, Qinghua Hub

a School of Economics and Management, Hubei University of Technology, Wuhan, Hubei, China
b School of Computer Science and Technology, Tianjin University, Tianjin, China

A R T I C L E I N F O

Communicated by Wei Chiang Hong

Keywords:
Self-adaptive nonlinear regression
Unknown noise
Mixture of Gaussians
Expectation maximization

A B S T R A C T

For most regression problems, the optimal regression model can be obtained by minimizing a loss function, and
the selection of loss functions has great effect on the performance of the derived regression model. Squared loss
is widely used in regression. It is theoretically optimal for Gaussian noise. However, real data are usually
polluted by complex and unknown noise, especially in the era of big data, the noise may not be fitted well by any
single distribution. To address the above problem, two novel nonlinear regression models for single-task and
multi-task problems are developed in this work, where the noise is fitted by Mixture of Gaussians. It was proved
that any continuous distributions can be approximated by Mixture of Gaussians. To obtain the optimal
parameters in the proposed models, an iterative algorithm based on Expectation Maximization is designed. The
proposed models turn to be a self-adaptive robust nonlinear regression models. The experimental results on
synthetic and real-world benchmark datasets show that the proposed models produce good performance
compared with current regression algorithms and provide superior robustness.

1. Introduction

Regression, which is concerned to extract hidden rules from data, is
an very old, but still a hot topic today [1]. The goal of regression is to
predict the value of target variables given the value of a D-dimensional
vector of independent variables [2]. Currently, regression analysis is
widely used in various domains, such as gold returns [3], solar power
output forecasting [4], face recognition [5] and so on. What attracts
more attention is the performance of regression models in real complex
conditions.

To develop regression algorithms, three important issues should be
taken into consideration, namely model structures, objective functions
and their corresponding optimization methods [1]. According to model
structures, regression algorithms can generally be divided into two
large categories: linear regression models and nonlinear regression
models. As to objective functions, loss functions have great effect on the
performance of regression models. The selection of loss functions is
mostly dependent on the types of noises [6,7]. For example, squared
loss is good for Gaussian noise, least absolute deviation loss for Laplace
noise [8], and so on. After obtaining the objective functions, we should
develop optimization methods to search the optimal solution under the
optimization objective functions.

However, for some real-world applications, training sets are usually

subject to unknown but complex noises. The underlying assumption of
Gaussian distributed error term in traditional models will be not
reliable in such case. There are two solutions to solve the regression
problems [9]. The first solution is to diagnose the outliers, which can be
seen as special noise with long tail [10], then the training samples
processed by removing the detected outliers will be fed into the
regression models [11]. The second solution is to construct a regression
model which is robust to outliers directly [12].

For the first solutions, generally, outliers can be identified by using
five basic plots (Graph of predicted residuals, Williams graph, Pregibon
graph, McCulloh-and-Meeter graph, L-R graph) [13,14] and other
additional methods mentioned in chemometrical textbooks [15].
Besides, there are many outlier detection techniques have been
proposed recently, which can be divided four categories [16]: statistical
[17], distance-based [18], density-based [19] and soft computing [20].
The final constructed regression model requires two-step procedure
[13]. The final regression accuracy depends largely on the goodness of
outliers detection results. And those outliers detections methods have
the risks of identifying normal points as outliers. In this case, certain
information in training samples will lose due to the reduction of useful
normal samples, that will have great effects on regression performance,
especially for the small size training samples. Moreover, detected
outliers may be also contains certain information. For the above
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considerations, in terms of regression modeling, we focus on the robust
regression models.

In order to improve the robustness of the regression model, much
effort has been made in the past few years. The common strategy to
enhance the robustness of the regression model is to add weights to
different samples. In [21], the authors pointed out that samples with
large simulation residuals should be given small weights. And in [22],
authors claimed that the relatively smaller weights should be given to
the sample points with large distance to others. Four different types of
weighting functions including Huber, Hampel, Logistic and Myriad are
studied in [23], the results show that Logistic and Myriad weighting
function are more robust than the other two functions in most cases
[24]. However, it is a difficult task to determine the optimal weight to
each sample. Some other researchers suggest using robust loss func-
tions to reduce the effect of different noises. In [25], maximum
correntropy criterion that comes from information theoretic learning
is selected as a loss function, while a truncated least squares loss
function is employed in [26]. This loss function is non-convex, which
leads to a difficult optimization task. Besides, many other new
regression models are proposed currently [27–30].

Another method to obtain a robust linear regression model is to
model the noise comprehensively by mixture distributions. Mixture of
Gaussian (MoG) [31], which can approximate any continues noise
distributions [32] and is successfully applied in many domains and
achieves great success, is used to fit the noise in regression problem. In
[33], an autoregressive model was proposed with the noise fitted by
MoG. Recently, other mixture distributions such as Mixture of t
distributions [34] and scale mixtures of skew-normal distributions
[35] were also employed to fit the unknown noise in LR model.

Besides, mixture distributions were also applied in nonlinear
regression models. In [36,37], nonlinear regression models based on
scale mixtures of skew-normal distributions were proposed with all
parameters estimated by Bayesian inference and EM algorithm,
respectively. Also, heteroscedastic nonlinear regression models based
on scale mixtures of skew-normal distributions were proposed with
parameters estimated by EM algorithm in [38]. However, the limitation
of the above nonlinear regression models is that the nonlinear
functions or nonlinear models are known in advance although the
mixture distributions can fit the noise in nonlinear regression models.
In literatures, there exist many nonlinear regression models such as
SVM, LSSVM and ELM etc. to approximate the unknown nonlinear
relationship between inputs and outputs. According to the theory of
Bayesian inference, square loss function is optimal when the noise is
Gaussian distributed [1]. However, in reality, the noise in real-world is
complex or unknown, a single distribution to describe the real noise is
improper.

In order to solve the problem of mismatch between the loss
function and the real unknown or complex noise distribution, and
motivated by successful applications of MoG in linear and nonlinear
regression problems under the condition that the linear and nonlinear
relationships are known, in this paper, a novel nonlinear regression
model is proposed to approximate the unknown nonlinear relation-
ships between inputs and outputs with the feature of noise compre-
hensively described by MoG. In our paper, in order to solve the single-
task and multi-tasks regression problems in reality with unknown or
complex noise, we propose two robust nonlinear regression models:
single-task nonlinear regression model (SNLR-MoG) and multi-tasks
nonlinear regression model (MNLR-MoG), which are all under the
MoG noise distribution assumption and are all optimized within EM
frameworks.

The contributions of this paper are summarized as follows:

(1) A nonlinear regression technique based on MoG is proposed to
build nonlinear regression model with unknown noise.

(2) Expectation Maximization is introduced to solve the proposed
nonlinear regression model.

(3) Extensive experiments are conducted, and the regression results
are compared with seven popular regression models and show that
the proposed model has great advantages under complex or
unknown noise conditions.

The rest of this paper is organized as follows. Section 2 describes
some related works about LR model under different type of noise. The
objective functions of proposed two nonlinear regression models are
described in section 3, and the corresponding training processes of two
models are introduced in Section 4. Experiments on synthetic datasets
and real-world benchmark datasets are carried out and the correspond-
ing results are shown in Section 5. Section 6 concludes the paper.

2. Related work

In this section, some related works about linear regression models
under different types of noise are presented. The linear regression
model is expressed as

β ey X= + , (1)

where y y yy = [ , ,…, ]n
T

1 2 means the vector of dependent variable, and
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1 2 means the vector of model noise. Assuming that the

noise of LR model is a Gaussian with zero mean and unknown variance,
namely
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In this case, the likelihood of e can be written as
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By changing from ei to yi, the corresponding density is expressed as
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Given the likelihood function above, then the log-likelihood can be
easily computed as follows:
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The estimated values of parameter β can be obtained by maximiz-
ing the log-likelihood function βL y( | ), namely
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In this case, maximizing log-likelihood is equivalent to minimizing
the sum of squared residuals, and then we have

β X X X y= ( ′ ) ′−1 (7)

Concluded from the above interference, when given the noise
distribution p e( )i in linear regression model, the regression coefficient
can be obtained by maximizing the log-likelihood function βL y( | ).
Generally, the assumption that the noise is Gaussian distributed is
sometimes improper in real-world applications. Therefore, in linear
regression model, the original assumption that the noise obeys
Gaussian distribution is replaced by the assumption that the noise
obeys different types of distributions, such as Laplace distribution, Beta
distribution and Huber distribution etc. And hence, the different
improved linear regression models with different single noise distribu-
tions are proposed. Table 1 shows the different noise distributions and
their corresponding optimal objective functions.

In practice, the noise is complex and unknown if the data are
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