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A B S T R A C T

In recent years, learning based hashing becomes an attractive technique in large-scale image retrieval due to its
low storage and computation cost. Hashing methods map each high-dimensional vector onto a low-dimensional
hamming space by projection operators. However, when processing high dimensional data retrieval, many
existing methods including hashing cost a majority of time on projection operators. In this paper, we solve this
problem by implementing a sparsity regularizer. On one hand, due to the sparse property of the projection
matrix, our method effectively lower both the storage and computation cost. On the other hand, we reduce the
effective number of parameters involved in the learned projection matrix according to sparsity regularizer,
which helps avoid overfitting problem. Without relaxing binary constraints, an iterative scheme jointly
optimizing the objective function directly was given, which helps to obtain effective and efficient binary codes.
We evaluate our method on three databases and compare it with some state-of-the-art hashing methods.
Experimental results demonstrate that our method outperforms the comparison approaches.

1. Introduction

As the explosive growing of images on the Internet, nearest
neighbor (NN) search becomes a very popular method in recent years.
It has been applied in various applications such as retrieval, classifica-
tion, object matching, visual tracking and related areas
[10,29,13,46,30,50,9]. In modern medical field, NN search also plays
an important role, such as mammogram analysis [18,19] and medical
image retrieval [26,33]. When the data are high-dimensional, due to
the large storage and time consumption, general NN search becomes
inefficient. To solve this problem, a great number of retrieval ap-
proaches are proposed [36,32,27,59]. Hashing based method has
attracted much attention because of its ability of storage and time-
saving computation. hashing based method leads to an efficient search
and solves scalability which is result from the growth of databases.

Hashing based methods map the high-dimensional, real-valued
vector onto a low-dimensional, binary vector, and the generated binary
codes are employed to efficient search. Existing hashing methods can
be roughly classified into two categories: data-independent [2,5,16,37]
and data-dependent [11–13,21,34,48]. Locality Sensitive Hashing
(LSH) [10] is one of the most popular data-independent method
among various existing hashing techniques. In LSH, the hash functions

are generated according to random projections. Hence these hash
functions are independent of any training data. The LSH family has
been constantly developed based on different similarity and distance
measures, including the Euclidean distance, p-norm distance [6],
Mahalanobis distance [23], kernel similarity [22,37] and so on. LSH
and it various achieve both good precision and recall. However, since
LSH is a pure data-independent approach, either it needs long binary
hash bits or multiple hash tables, which requires large memory
consumption. Thus the LSH family may be restricted in many practical
applications.

To remedy data-independent techniques, data-dependent hashing
methods have been proposed to learn similarity-preserving binary
codes from training data. This kind of hashing methods is also known
as learning-based methods in the literature. Data-dependent hashing
techniques preserve similarity between original data space and binary
data space. Compared with the data-independent methods, data-
dependent methods achieve equivalent results with a small code size.
Representative data-dependent methods can be roughly divided into
two parts: supervised methods (including semi-supervised methods),
and unsupervised methods. Unsupervised methods use unlabelled data
to learn binary codes. For example, Iterative Quantization (ITQ) [12],
Spectral Hashing (SH) [52], Anchor Graph Hashing (AGH) [29],
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Inductive Manifold Hashing(IMH) [41,42], Asymmetric Inner Product
Binary Coding (AIBC) [39], Sparse Projection (SP) [53] etc., are some
widely accepted methods. Unsupervised approaches seek to learn
hashing functions from underlying data structures, distributions, or
topological information. Differently, supervised methods consider the
supervised information and the inherent properties of data simulta-
neously, e.g., Semi-supervised spectral hashing [54], Kernel-based
supervised hashing (KSH) [28], Ranking-based Supervised Hashing
(RSH) [49], Supervised Discrete Hashing (SDH) [40], Minimal Loss
Hashing (MLH) [34], etc. Depart from most these methods focusing
generic image retrieval, a few works [17,57,58] have been devoted to
tackle the large-scale medical image retrieval problem.

Recently, a lot of works related to deep neural networks (DNN)
[20,55] have been proposed and show that features more than
thousands of dimensions are useful for recognition tasks. Generally,
many proposed hashing methods are based on traditional hand-crafted
features, like GIST [35], SIFT [31], etc. However DNN features are
learned from large-scale data and thus are not structured. On the other
hand, generating binary codes, i.e., binary encoding, uses a projection
matrix from some d-dimensional inputs to some corresponding L-
dimensional outputs. If d and L are large, the computational efficiency
and storage cost of calculating projection matrix become a bottleneck.

In this paper, we propose a novel supervised hashing method which
leverages sparse projection. A sparse regularizer [53] is introduced to
the objective function which restricts the sparsity of projection matrix
via controlling the number of non-zero coefficients directly. This
operation not only leads to a drop of the computational cost but
reduces the effective number of parameters. We also add supervised
information in the objective function in order to sufficiently utilize label
information which preserves semantic similarity. When implementing
binary optimization, we adopt a discrete cyclic coordinate descent
(DCC) algorithm [40] to produce binary codes bit by bit. The DCC
algorithm generates the optimal binary codes in a closed form, which
makes the generated hash bits effectively and efficiently. Our contribu-
tions are summarized as follows.

1. We propose a new supervised hashing method by introducing a
sparse regularizer to generate sparse projection matrix which can
effectively reduce memory cost and embedding time.

2. We adopt the variable-splitting to reduce each sub-optimization
problem with only one constraint condition at most, which is easy to
be solved. We also show that direct optimization without any
relaxation achieves high quality hash codes and leads to better
results.

We demonstrate our method on three databases (ImageNet [7],
CIFAR-101 and DDSM [1,14]) and show that our method leads to
better accuracy than some existing competitive hashing methods,
including three dense projection hashing methods, i.e., CCA-ITQ
[12], KSH [28], SDH [40] and one sparse projection hashing method,
i.e., SP [53].

2. Supervised sparse projection for binary encoding

Firstly, we define the notation used in our formulation. We are
given a set of training data points X x x= { ,…, }n1 in which each point is
d-dimensional, i.e., x ∈ d , and we assume that all the training data
points are zero-centered, i.e., x∑ = 0i

n
i=1 . Our target is to use a sparse

projection matrix R ∈ L d× to learn a set of binary codes
B b= { } ∈ {−1, 1}i i

n L n
=1

× , where L is the binary code length. We can
write it as following:

H X sgn RX s t R m( ) = ( ) . . ≤0 (1)

Here sgn (·) denotes sgn function, which means +1 for positive
numbers and −1 for other numbers. · 0 denotes the number of non-
zero elements of the matrix, and m controls the sparsity of the
projection matrix.

After defining the notation and hash function, we focus on propos-
ing an objective function to learn sparse projection R. Let bi denotes
the binary representation of i-th data point, where i n= 1,…, . The basic
binary encoding scheme is to quantize the fitting error of the binary
codes bi to the continuous embedding Rxi. We conclude above method
by following:

∑ Rx b s t R m bmin − . . ≤ = {−1, 1}
i

n

i i i
L

=1

2
0

(2)

We can rewrite above as a matrix form. That is,

RX B s t R m Bmin − . . ≤ = {−1, 1}F
L n2

0
× (3)

Here · F denotes the Frobenius norm. This problem is similar with
ITQ [12] but replacing the orthogonal constraint with a sparsity
constraint.

To sufficiently utilize the label information, we use linear classifica-
tion framework to solve binary codes learning problem. We adopt the
multi-class classification y W b= T , where W ∈ L c× , each column of the
matrix W denotes the classification vector for different class and y ∈ c

denotes label vector, which should have a maximun element in the
corresponding class.

By adding the label information loss as the penalty term in (3), we
can get the following problem:

RX B α Y W B λ W s t R

m B

min − + ( − + ) . .

≤ = {−1, 1}
B R W

F
T

F F

L n

, ,
2 2 2

0

× (4)

Where α > 0 is the penalty parameter which controls the influence of
label information. When α = 0 implies that the problem (4) has
degraded into unsupervised problem. With increasing of α, label
information plays an important role in learning effective and efficient
binary codes. λ in problem (4) is the regularization parameter. The
overview of the proposed method is shown in Fig. 1.

Because of the l0 constraint, the problem (4) is non-convex. We
can't solve it directly. One alternative method is relaxing the l0-
regularization to l1-regularization, i.e., R m≤1 , where · 1 means the
sum of the absolute values of the elements. In [38], the authors regard
projection matrix R as a classifier that predicts the binary labels.
Therefore, they rewrite their objective function as a max-margin l1-
regularized linear classifier and address the problem by using
LibLinear [8]. However, in our method, we don't replace the l0-
regularization to other forms. On one hand, we consider that the l0-
regularization can directly control sparsity rate of projection matrix,
while the l1 case and other regularizations don't have this easy control,
on the other hand, we will show that our method with l0-regularization
leads to a simply optimization progress without too much loss of
information.

3. Optimization

It is a challenge to solve (4) directly due to the sparsity constraint.
Like in [51,53], we adopt the variable-splitting and penalty techniques
in optimization by introducing a new variable R and put sparsity
constraint on it, and meanwhile we penalty the error between R X and
RX.

We rewrite (4) as following:

RX B β RX R X α Y W B λ W s t R

m B

min − + − + ( − + ) . .

≤ = {−1, 1}
B R W R

F F
T

F F

L n

, , ,
2 2 2 2

0

× (5)

Here β is a penalty term The problem is similar to Half-Quadratic
Splitting [51]. We solve the problem (5) in an iterative fashion:1 http://www.cs.toronto.edu/kriz/cifar.html
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