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A B S T R A C T

Volumetric path tracing relies on importance sampling to stochastically construct light transport paths from an
emitter to the sensor. Existing techniques incrementally sample path vertices or segments with respect to the
local scattering property incorporating the geometry and scattering terms. Thus the joint probability density for
drawing a path results in a product of the conditional densities each for a local sampling decision. We present a
joint path sampling technique that additionally accounts for the spatially varying visibility due to transmittance
and occlusion along a double scattering path. The directional density is formulated as a Gaussian mixture model
being fitted to single scattered radiance by the online expectation–maximization algorithm. It is first trained
with samples oblivious to the visibility, then incrementally consumes an arbitrary number of samples being
drawn from the actual scene. The resulting density in turn guides the directional sampling decision for both
isotropic and anisotropic scattering. We demonstrate the benefit of our approach by integrating it into the
unidirectional path tracing algorithm. The image noise is effectively reduced, even while rendering the
heterogeneous participating media in the presence of complex opaque surfaces.

1. Introduction

Robust and efficient light transport simulation in participating
media is challenging due to the enclosed particles, which incur a large
number of scattering and absorption events. Among many algorithms
the computer graphics community has developed, the Monte Carlo
integration based volumetric path tracing [1] is widely adopted to
render participating media. The total amount of light arriving at the
sensor film is described as an integral over the space of possible light
transport paths, which is stochastically sampled to achieve an unbiased
estimate. A path is successively constructed as a random walk by
sampling a probability density function (PDF) to decide a direction or
distance. This class of algorithms is able to flexibly handle various
scenes, but suffer from much image noise due to the curse of
dimensionality.

To improve convergence rate, the importance sampling technique is
adopted to steer each decision with respect to the local scattering
property. A proposal PDF is introduced to distribute more samples to
where the value of the integrand is relatively high, thus variance of the
estimator is reduced expectedly. This integrand is a product of proper-

ties consisting of the geometry, scattering, transmittance and occlusion
terms. It is often intractable to formulate an analytical proposal which
is able to match the whole integrand. Existing methods strive for
sampling the geometry and scattering terms separately or jointly only.
Thereby such local construction of paths is oblivious to the global
distribution of radiance. Its efficiency is ensured only in scenes where
the transmittance and the occlusion terms do not introduce high
variations to the integrand.

We address this visibility issue due to varying optical thickness and
spatial occlusion by enhancing the directional decision in the case of
low-order scattering. Its sampling PDF is formulated as a Gaussian
mixture model (GMM), which subsumes the product of the transmit-
tance and scattering terms over multiple consecutive decisions. Then it
can be trained by an arbitrary number of path samples using the online
expectation–maximization (EM) algorithm, progressively adapting to
spatially varying visibility in the path space. Since the visibility has no
closed-form expression, we employ a conjugate prior of inverse Wishart
distribution to avoid over-fitting. This directional PDF is initialized by
samples being drawn from the joint PDF of the scattering and geometry
terms only, then it is incrementally fitted to the actual scene and guides
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the directional sampling afterwards.
Along with the distance PDFs, our approach enables a joint

importance sampling technique which is able to draw a path of single
or double scattering entirely. Our main contributions are:

• a directional PDF which progressively adapts to spatially varying
visibility in the path space and guides random decisions of future
path sample;

• a learning procedure which avoids of over-fitting due to complex
visibility and ensures the joint form of both the transmittance and
scattering terms;

• a joint sampling technique which improves the volumetric path
tracing algorithm by drawing a path entirely thus variance of the
estimator is further reduced.

We discuss the related work (Section 2) to position our visibility-aware
joint importance sampling technique first. After which the background
(Section 3) is given to illustrate the basics about the volumetric path
tracing. Then our approach (Section 4) describes how to integrate the
visibility with the existing joint importance sampling method via the
GMM learning. The results and implementation details (Section 5) are
presented to demonstrate the effectiveness. Finally we conclude the
paper and discuss future work (Section 6).

2. Related work

The path tracing algorithm [2] was first introduced to sample light
transport paths connecting emitters to the sensor in the context of
surface rendering. The scenes are assumed to be in a vacuum and the
path segments bouncing between surfaces are constant. It was for-
malized as a solution to the path integral [3], which was then extended
to the case of participating media [4]. The path integral is a product of
the geometry, visibility (i.e. transmittance and occlusion) and scatter-
ing terms (see Section 3), thus it is often impossible to find a closed-
form proposal PDF which is ideally proportional to that integrand.
Many approximate approaches have been devised to sample the path
space with respect to partial integrand or reuse sampled paths for
variance reduction.

Path sampling PDF factorization: The natural approach of path
construction in participating media alternatively samples the scattering
term (e.g. phase function) for the direction of the path segment, and
then the transmittance for the traveled distance along this segment [4–
6]. A geometry term contributes more variations than the transmit-
tance under some circumstances, thus it is adopted to determine the
distance instead for single scattering in isotropic media [7,8]. In this
case the proposal PDF is just a product of conditional PDFs exactly
proportional to respective term only. For double scattering the
geometry and scattering terms over three path segments can be
considered jointly [9]. The proposal PDF is chosen to be proportional
to their product and then it is factorized into conditional PDFs in
canonical coordinate system. And the conditional PDFs corresponding
to scattering are numerically tabulated due to lack of closed-form
formula. These proposals are combined with the natural approach for
path sampling by the multiple importance sampling (MIS) [7]. But the
resulting proposal is only a linear combination of individual proposal
PDFs rather than a product of all terms in the path integrand. We
augment the joint proposal with the visibility term to propose a guided
joint path sampling technique for more effective variance reduction.

Caching and reusing of sampled paths: Paths can be bidirectionally
constructed by caching path segments starting from emitters, then they
are shared among segments from the sensor. The overall light
propagating between these two kinds of segments is considered thus
more samples can be obtained at once [8]. The Metropolis–Hastings
algorithm based path tracing [3,4] strives to implicitly sample path
with contribution proportional to the whole integrand. An existing path
is treated as a state on the path space, then it is mutated to obtain a

new path. Although paths with large contribution appear more
frequently, they usually suffer from low acceptance rate resulting from
high variations in the integrand. To alleviate this problem, the
integrand is transformed to eliminate its significant factors and
mutation is applied in a warped path space [10–12]. These approaches
suffer from sample correlation and are usually outperformed by the
independent samples in practical cases. The GMM learning has been
introduced to keep the information of sampled paths [13] for volu-
metric photon mapping, and an online EM algorithm based on
maximum a posteriori (MAP) has been adopted to fit the conditional
PDF of surfaces scattering and occlusion in complex scenes [14]. Since
the EM algorithm only approaches a local mode, both of them are
sensitive to the initial batch of samples. We extend this approach to
low-order scattering in participating media. The radiance caching [15]
stores the gradient of the reduced radiance, single and multiple
scattering to exploit the local smoothness of the radiance field for
extrapolation. Similarly, we utilize the gradient of double scattering but
to determine the validity radius of the radiance PDF instances in the
medium. And the visibility being ignored by the gradient due to its
discontinuity in previous work is additionally handled.

3. Background

In this section we review the path integral framework for scenes
with participating media, following a presentation similar to [9]. This
framework describes how a sensor (e.g. camera) receives light from an
emitter (e.g. light bulb) to render a realistic image.

The intensity of a pixel is a high-dimensional integral over the space
Ω of light transport paths

∫I f x x= ( )d
Ω (1)

where x x x= ,…, M0 is a path with M ≥ 1 segments and M + 1 vertices.
The first vertex x0 is on an emitter while the last vertex xM is on a
sensor. Others are spatial locations where the path is scattered, either
on surfaces or in participating media. The differential measure xd on Ω
represents area integration over surfaces or volume integration over
region. The measurement contribution function f x( ) is a product of
geometry throughput G x( ), scattering throughput ρ x( ), transmittance
throughput T x( ), and occlusion throughput O x( )

f G ρ T Ox x x x x( ) = ( ) ( ) ( ) ( ) (2)

where each throughput is a product of corresponding term over all the
path segments x xm m+1 or vertices xm. The scattering term is
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where Le is the emitter emission,We is the sensor importance, ρs is the
bidirectional scattering distribution function (BSDF), ρp is the phase
function and σs is the scattering coefficient. The geometry term is
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where D x y n w( → ) = | · |x xy if x is on surfaces, and D x y( → ) = 1 if x is in
media. It is responsible for converting the product of solid angle and
length measure to the volume measure (i.e. Jacobian determinant). The
transmittance term is
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where σt is the sum of the absorption coefficient and scattering
coefficient. The occlusion term O x x( , )m m+1 is zero if segment x xm m+1
is intercepted by any surface or one otherwise.

Monte Carlo integration empirically solves Eq. (1) by drawing
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