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A B S T R A C T

This paper focus on the finite-time state estimation problem for delayed reaction-diffusion genetic regulatory
networks (DRDGRNs) under Dirichlet boundary conditions. The purpose is to design a finite-time state
observer which is used to estimate the concentrations of mRNAs and proteins via available measurement
outputs. By constructing a Lyapunov–Krasovskii functional (LKF) concluding quad-slope integrations, we
establish a reaction-diffusion-dependent and delay-dependent finite-time stability criterion for the error system.
The derivative of LKF is estimated by employing the Wirtinger-type integral inequality, Gronwall inequality and
convex (reciprocally convex) technique. The stability criterion is to check the feasibility of a set of linear matrix
inequalities (LMIs), which can be easily realized by the toolbox YALMIP of MATLAB. In addition, the expected
finite-time state observer gain matrices can be represented by a feasible solution of the set of LMIs. Finally, two
numerical examples are presented to illustrate the effectiveness of the theoretical results.

1. Introduction

In recent years, genetic regulatory networks (GRNs) has become a
hot topic in many disciplines, for example, mathematics, statistics,
biology and medicine, and aroused the attention of experts and
scholars. As a result, a great deal of very important research results
(see [1–7] and the references therein) have been achieved. GRNs, as
highly complex network models, describe genetic expression and
regulation behavior. The transcription and translation are the most
important and most complex processes in the GRNs.

Currently, mathematical models have been one of the main tools to
analyze GRNs. Due to the different forms of the GRNs and the different
research purpose and methods, several GRN models have been
established. For example, the Bayesian model [8], the Boolean model
[7,9] and the functional differential equations model [5,10,11]. A
functional differential equation model describes the continuous change
of mRNA and protein concentrations which have two merits: (i) the
slow processes of the transcription and translation are characterized by
time delays; and (ii) the continuous change of mRNA and protein
concentrations are expressed as the derivatives of the unknown
functions. So, functional differential equation models have been widely
applied to understand the nonlinearity and complexity of GRNs. It
should be emphasized that time delays are one of main sources for
causing instability and/or poor performance [12–15]. Accordingly,
stability analysis of functional differential equation models has aroused

increasing research interests, and a great number of outstanding
results have been reported (see [6,7,16–24] and the references there-
in). The stability criteria presented in these literature are divided into
two kinds: delay-dependent stability ones and delay-independent
stability ones. In general, delay-dependent stability criteria are less
conservative than delay-independent ones. Please refer to [25–32] for
effective approaches to establish delay-dependent stability criteria.

In some mathematical modeling, it is assumed that GRNs are
spatially homogeneous, namely, the concentrations of mRNAs and
proteins are homogenous in space at all times. However, in some cases,
it is need to introduce reaction-diffusion terms into models [19,33–39].
Especially, it is necessary to consider the diffusion of mRNAs and
proteins [19,37–39]. Thus, it is imperative to introduce reaction-
diffusion terms into the continuous-time GRN models. To the best of
authors' knowledge, the stability problem for delayed reaction-diffu-
sion genetic regulatory networks (DRDGRNs) has been only studied in
[19,22–24]. Ma et al. [24] introduced DRDGRNs for the first time and
established delay-dependent asymptotic stability criteria. Ma et al.'s
results have been gradually improved in [19,23] by introducing novel
LKF and utilizing Wirtinger-type integral inequality approach. The
problem of finite-time robust stochastic stability analysis for uncertain
stochastic DRDRNs has been studied in [22].

With the change of environment, the usual feedback loops existing
in GRNs may be destroyed. This will make GRNs' performance worse,
and eventually lead to some fatal disease like cancer [40]. Therefore, it
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is necessary to adjust the feedback loops by artificial input control. For
this end, the exact concentrations of the mRNAs and proteins (that is,
the states of continuous GRN models) are needed. However, due to the
complexity of GRNs, it is almost impossible to measure the exact
concentrations. Hence, the state estimation for GRNs has been one of
available methods to investigate dynamical behaviors; see, eg., [41–
44]. To the best knowledge of authors, the state estimation problem for
DRDGRNs is only in [45], although the reaction-diffusion-free case has
been researched (see [5,41,46–49] and the references therein). This
motivates our research interests.

The aim of this paper is to design a finite-time state observer for
estimating concentrations of the mRNAs and proteins of DRDGRNS. A
novel LKF is first constructed. Then its derivative is estimated by
employing Wirtinger-type integral inequality [50], Gronwall inequality
[51], convex technique and reciprocally convex technique [52]. As a
result, a reaction-diffusion-dependent and delay-dependent sufficient
condition is given to ensure that the error system is finite-time stable.
This is different from [45] wherein the asymptotic stability of error
systems are involved. The stability criterion is given in the form of
linear matrix inequalities (LMIs), which can be solved by applying the
Toolbox LMI or YALMIP of MATLAB. Thereby, we design a finite-time
state observer whose gain matrices are described based on a feasible
solution to these LMIs. In addition, two numerical examples are
presented to illustrate the theoretical results obtained in this paper.

Notation: Throughout the paper, for given real symmetric matrices
X and Y, X Y X Y> ( ≥ ) means that X Y− is positive definite (positive
semi-definite). I is the identity matrix of appropriate dimension, AT

represents the transpose of matrix A. Set l l〈 〉 = {1, 2,…, } for any
positive integer l. Ω is a compact set in the vector space n with smooth
boundary Ω∂ . Let C X( , )n1 be the Banach space of functions which
map X into n and have the continuous first derivatives. We define a
pair of norms on C X( , )n1 and C d Ω([− , 0] × , )n1 by ∥·∥ as follows:
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respectively. Let diag(⋯) and col(⋯) be the (block) diagonal matrix and
column matrix formed by the elements in brackets, respectively.

2. Problem formulation and preliminaries

This paper considers the following DRDGRNs [19]:
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i are the concentrations of mRNA and protein of the
ith node, respectively; ai and ci are degradation rates of the mRNA and
protein, respectively; bi is a constant; W represents the coupling
matrix, which is defined as follows:
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here γij is the dimensionless transcriptional rate of transcription factor

j to gene i; gj is the activation function of the form g s( ) =j
s

s1 +

H

H , where
H is the Hill coefficient; q Σ γ=i j I ij∈ i , Ii is the set of all the nodes which
are repressors of gene i; σ t( ) and τ t( ) are time-varying delays satisfying
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where τ , σ , μτ and μσ are non-negative real numbers.
Let m x p x( *( ), *( )) is the unique equilibrium solution of DRDGRN

(1), that is,
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Set m t x m t x m x( , ) = ( , ) − *( )͠ and p t x p t x p x( , ) = ( , ) − *( )∼ . Then
DRDGRN (1) is transformed to
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where
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In this paper, the following initial conditions and Dirichlet bound-
ary conditions associated with DRDGRN (3) are considered:
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where d σ τ= max{ , }, and ϕ t x( , )i , ϕ t x C d Ω*( , ) ∈ ([− , 0] × , )i
n1 .

As shown in Introduction, it is important to estimate the exact
concentrations of the mRNAs and proteins based on the available
measurement. For this end, in the following we assume that the
network outputs are

z t x Mm t x z t x Np t x( , ) = ( , ), ( , ) = ( , ),m p (4)

where M and N are known constant matrices of appropriate sizes, and
z t x( , )m and z t x( , )p are the network outputs.

The aim of this paper is to estimate the states of DRDGRN (3) by
employing the following state observer:
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